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AFIT/GSO/ENY/99M-09 

Abstract 

The Anti-Ballistic missile Laser (ABL) Project is committed to defense against 

attack from enemy-launched Theater Ballistic Missiles using an airborne laser platform to 

disable an enemy missile in the boost phase of launch. Wielding a laser of this power and 

scope requires that no collateral damage be caused by laser energy which may escape 

from the theater of engagement. The most likely track of such a laser would pose a 

significant threat to space-based assets. 

The Predictive Avoidance algorithm is designed to predict the path of a given 

laser firing sequence, and perform real-time forecasting of, and deconfliction with, the 

ephemerides of a given set of satellites. The primary goal is to establish the theoretical 

framework of this algorithm. The secondary goal of this thesis is to develop a modular 

software package that can, with minor modifications, be incorporated into the fire-control 

system of ABL to perform real-time forecasting within given time and error budgets. 

This software takes the form of a Preprocessor, that filters the active satellites to 

determine which satellites are in view, and the Main Processor, which analyzes the 

satellites that are in view. The Main Processor determines whether any of the satellites in 

view will intersect the laser beam while it is illuminating a target. 
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ANTI-BALLISTIC MISSILE LASER PREDICTIVE AVOIDANCE OF SATELLITES: 
THEORY AND SOFTWARE FOR 

REAL-TIME PROCESSING AND DECONFLICTION OF 
SATELLITE EPHEMERIDES WITH A MOVING PLATFORM LASER 

I. Introduction 

The Anti-Ballistic missile Laser (ABL) Project is committed to defense of the 

United States and its allies against attack from enemy-launched Theater Ballistic Missiles 

(TBMs). The ABL is a system which, when deployed, will be housed in a Boeing 747- 

400F airframe. It will fly at a cruising altitude of roughly 12.9 km (Förden, Sept 97), 

above most cloud cover. From this altitude, it will acquire target missiles through an 

active tracking system, attempting to destroy the missile in its boost stage, where it is 

most vulnerable. 

1.1 ABL Strategy 

The ABL will fly above the cloud deck, and will most likely travel in an 

elongated figure-eight flight path. The long axis of the figure-eight will be perpendicular 

to the expected direction of the missile launch, to ensure the smallest focal radius to the 

possible targets for a given period of time. 

1.1.1 Laser Systems 

The ABL will actually be comprised of four independent laser systems. The first 

of these systems, the Active Ranging System (ARS) laser, is a frequency modulated 

continuous-wave carbon dioxide laser. It operates at a relatively low power (200 Watts) 

at a wavelength of approximately 11.15 |im.  Its purpose is solely to actively scan for a 



target. The second laser, the Track ILluminator Laser (TILL) is a kilowatt-class Yb:Yag 

laser estimated to operate at a wavelength of approximately 1.03 micrometers. After a 

target has been located with the ARS, it will be illuminated with the TILL to begin active 

tracking of the target. The third laser system, the Beacon ILluminator Laser (BILL) is 

also a kilowatt-class laser system. It will be composed of a Nd:Yag laser with a 

wavelength of approximately 1.06 micrometers. Shortly after the TILL has begun active 

tracking of the Theater Ballistic Missile (TBM), the BILL will be turned on and will be 

used to provide real-time data to an atmospheric compensation system designed to 

compensate for atmospheric turbulence. After the BELL has been trained and locked onto 

the TBM, the final laser will be fired. This final laser, the High Energy Laser (HEL), is a 

Chemical Oxygen-Iodine Laser (COIL) that will operate at a wavelength of 

approximately 1.315 micrometers (Förden, Sept 97). Its power is estimated by the author 

to be between 1-3 Megawatts. 

Table 1.1 The Lasers Aboard the ABL Platform 

Device Wavelength Power Pulse Type Aperture Size 

ARS 11.15 um 200 W FMCW 8 inches 

TILL 1.03 um KW class 5 KHz, 50 nsec 30 cm 

BELL 1.06 (im KW class 7.5 KHz, 50 nsec 30 cm 

HEL 1.315 um 1-3 MW CW 150 cm 



1.1.2 The Predictive Avoidance Concept 

During the course of a mission, laser energy will almost certainly escape from the 

target area. The lasers of the ABL are designed for long-distance propagation, being 

focused in a fairly narrow beam. This means that even at great distances, escaping 

energy from these lasers may pose a threat to any inadvertent targets that stray into the 

line of fire, perhaps far downrange of the targeted missile. The exception to this rule is 

the ARS, which is a fairly low power laser that will attenuate quickly within the 

atmosphere. For this reason, the ARS is not considered when assessing a threat to 

inadvertent targets. The TILL, BILL and especially the HEL, however, are considered to 

be potentially dangerous to downrange assets. But what assets are threatened? The ABL 

will almost certainly be firing above the artificial horizon of the aircraft, because of the 

nature of the target being acquired. Therefore ground assets and aircraft are not at great 

risk. However, satellites are at risk. They can conceivably be at any point in the sky, and 

can be extremely sensitive to radiation emanating from an Earth-ward direction. Of 

particular interest are Low-Earth Orbiting (LEO) satellites and manned platforms that 

have sensors pointed towards the Earth. At LEO altitudes the lasers aboard the ABL can 

certainly damage these sensitive assets. The concept of Predictive Avoidance (PA) is to 

develop a strategy whereby the targeted missile is destroyed, while all downrange 

satellites are spared from potentially harmful laser radiation. 

1.1.3 Predictive Avoidance Strategy 

The Beam Control/Fire Control (BC/FC) system within the ABL platform is a 

computer that controls the tracking and firing of the ABL's four lasers. Among the many 



tasks of the BC/FC is to pass all commands given by the user of the system through an 

"engagement filter", which, among other things, can inhibit the firing sequence if a 

dangerous situation (such as a satellite passing through the lazing arc) is detected 

(Leonard, 1998). The task, therefore, is to construct a piece of software that can monitor 

the locations of satellites and provide satellite/laser deconfliction information directly to 

the BC/FC system. This "Predictive Avoidance Software Package" (PASP) could then 

be run just prior to engaging a missile to ensure that no satellites are forecasted to fall 

within the laser's path. 

1.2 The Goal of This Study 

The primary thrust of this thesis is to construct a reliable real-time predictive 

avoidance algorithm that uses inputs as they would exist in the operational environment 

of the ABL platform and generates outputs that directly communicate the probability of 

lazing a satellite during a given mission with known mission parameters. A second goal 

of this study is to produce a software package that runs this predictive avoidance 

algorithm in real-time. This software package is designed with three conflicting (but 

important) objectives. The first objective is to make the software readily understandable 

to a person who wishes to study it in the future. This software is designed with an 

agreement by Boeing that it will be studied and at least partially incorporated directly into 

the BC/FC of the ABL platform. Therefore, to ensure a smooth incorporation into ABL, 

the software will be as clear and non-ambiguous as possible. The second goal is that the 

software be fast. It is estimated that the predictive avoidance software should not need 

more than 0.5 seconds to fully process a mission. Therefore, strategies must be taken to 

minimize processing time. The third major goal for the PA software is that it should be 
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modular. There are a number of methods that are used within this software that may 

become obsolete or deemed inaccurate by ABL engineers. While this is not an aspiration 

for this software, it would be foolish to not plan for this contingency. Therefore the 

components of this software package should be highly granular. That is, the tasks should 

be divided into as small of chunks as possible. It should also have clean, strongly defined 

interfaces between those modules. Of these three goals for the software, 

understandability is the most important. There are many cases within the software in 

which a fluid, slow, understandable implementation has been used instead of a speedier 

vague implementation. This is done with the understanding that the software will be 

reviewed at a later time, when any "slow" algorithms may be supplanted with the 

software engineer's choice of implementations. 

1.3 Method of Attack 

The method that will be used here to solve the Predictive Avoidance problem is to 

split the task into two smaller tasks, which we shall call the Anti-Ballistic missile 

Laser/Predictive Avoidance (ABLPA) Preprocessor, and the ABLPA Main Processor. 

The ABLPA Preprocessor will handle the task of dissecting the list of satellite objects 

provided by US Space Command, and determining which of these objects are in view of 

the platform during the operational employment of the laser. The ABL Main Processor, 

on the other hand, will have the task of analyzing the "short" list of satellite objects in 

view (determined by the Preprocessor), and performing real-time calculations to compare 

the arc of the laser with the path of the satellite. It will be the Main Processor that is 

executed during the fire-sequence of ABL to determine in real-time the probability of 

accidentally lazing a satellite. The reason that the PA task has been split in this way is 
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fairly straightforward. The Main Processor must execute its task in as little time as 

possible, because it is run as part of the BC/FC sequence, which must rapidly acquire, 

track and laze the ballistic missile target. If there are fewer targets to process in the Main 

Processor sequence, it will execute more quickly. 



II. ABLPA Preprocessor Methodology 

As mentioned previously, in order to save as much time as possible within the 

main processor, it is necessary to limit the number of satellites that are processed. The 

preprocessor filters satellite ephemerides to find only those satellites that may possibly be 

within the range of the laser platform for a specified time. This is accomplished in two 

separate tasks. In the first task, the preprocessor must locate the satellite at the current 

local time, and determine whether or not the satellite is currently in view. This is done 

with the help of an ephemeris time propagator, Satellite General Perturbations propagator 

(SGP4) developed by Air Force Space Command to track orbiting objects. The second 

task involves determining when (if ever) the satellite will come into view of the platform. 

This second task is only needed if the satellite is not in view. For instance, The ABLPA 

Preprocessor will be executed at regular intervals, but the possibility exists that a satellite 

may fly into view of the platform after the Preprocessor executes but before the next 

execution. If so, this satellite must also be included on the "short" list of objects fed to 

the Main Processor. These two tasks, and the methods by which they are resolved, are 

the focus of this chapter. 

2.1 Locating the Platform 

The first step in finding the location of the satellite with respect to the ABL 

platform is to determine where the platform is, and in what coordinate frame its position 

is known. In general, we can expect to receive the platform's position in terms of latitude 

(5), longitude (k), and altitude (h). This frame of reference is Earth Centered Earth Fixed 

(ECEF), and rotates with the Earth.   Unfortunately, this method of reference does not 



lend itself easily to fixing a position with respect to a satellite, whose coordinates are 

most often given in the Earth-Centered/Inertial (ECI) coordinate frame. Therefore a way 

must be found to transfer the platform's position vector from the ECEF frame to the ECI 

frame. 

2.2 Finding 6g 

Let the value, 0g, represent the true angle between the Greenwich Meridian (that 

"moves" with the Earth) and the Vernal Equinox, or First Point of Aries, which is a point 

relatively "fixed" in the heavens. This value is important because it provides the rotation 

angle between the ECEF coordinate frame and the ECI frame. 

2.2.1 The ECEF frame 

Most aircraft reference their position with respect to the Equator (0° latitude), the 

Greenwich Meridian (0° longitude), and their height above sea-level. This reference 

system provides a way to track location in a coordinate frame which is fixed with respect 

to the globe. This is the frame in which the ABL platform will likely reference its 

position. Both coordinate frames use the Earth's polar axis as one reference axis, and the 

equatorial plane as the reference plain in which the other two reference axes lie. 

However, the ECEF frame rotates with the Earth using the line from the center of the 

Earth to the Greenwich Meridian as its second reference axis. 

2.2.2 The ECI Frame 

Because the Earth is "rotating" in space with respect to other celestial bodies, the 

ECEF frame becomes inconvenient to track the motions of satellites that orbit the Earth. 

A new frame, the ECI frame, is adopted to track these motions.   This frame does not 
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rotate with the Earth, but rather fixes a reference axis on the Vernal Equinox, also 

referred to as the First Point of Aries. This provides a seemingly more absolute fixed, or 

"inertial", frame with which to measure the rotation of the Earth and the motions of 

satellites. 

2.2.3 Frame Conversion 

As might be expected, a conversion must exist between these two frames of 

reference if any meaningful correlation between the motions of objects in these two 

reference frames is to be done. 6g will be used to refer to the rotation angle between 

these two coordinate frames, and will be used for this conversion. Fortunately, the rate of 

the rotation of the Earth is fairly constant, remaining relatively fixed at 1 revolution every 

23 hours, 56 minutes and 4.09054 seconds (American Ephemeris and Nautical Almanac, 

1980). In so stating this, I am neglecting the gradual deceleration of the Earth's rotation, 

which is assumed to be negligible for the relatively short time spans with which we will 

be addressing here. Therefore: 

1 sidereal day  =23*3600 + 56*60 + 4.09054   =   86164.09054 sec (2.1) 

The Earth rotates at the rate: 

360° = 0.004178074622^- = 0.0000729211585453— = 0,       (2.2) 
86164.09054 sec sec sec 

2.2.4 Absolute Time 

Now that we have a rotation rate of one coordinate frame with respect to the 

other, we need to specify the amount of time that transpires during our observations. 

Furthermore, we need to specify a starting value of 0g in order to propagate its value into 



the future.  We can obtain the former by using Modified Julian Time (MJT), which is 

easily mapped to Greenwich Mean Time (GMT). For brevity, I will not discuss the time 

mapping algorithm here, but will refer the reader to the software modules written in 

conjunction with this thesis.   The module "TimeModules.c" performs the conversion 

between GMT and MJT (Numerical Recipes in C, 1990). These modules can be found at 

the end of this paper.   We can further obtain a starting point of 6g by referencing the 

American Ephemeris and Nautical Almanac(1980) and taking any value of 9g which is 

paired with its corresponding Julian time. For example: 

Date: December 1, 1980 
Julian Date: 2444574.5 
Modified Julian Date: 4574.5 
9g: 4 hrs 40 min 1.299 sec 

=[(4*3600)+(40*60)+( 1.299)] * [0.004166666667deg/sec] 
= 70.0054124999 degrees 
= 1.22182494234 radians 

It is interesting to note that the position is referenced in terms of Hours, Minutes and 

Seconds (HMS), rather than degrees within the Almanac. Transformation between HMS 

and degrees is relatively straightforward. There are 24 hours in 360 degrees. Therefore: 

lsec = 
3 0deg = 0.004166666667^ (2.3) 

(24Ä«*3600—) sec 

hr 

Notice that we do not use the sidereal day (23 hrs, 56 min, 4.09054 sec) to translate these 

two measuring systems, because the arc of the angle is measured in a complete 24 hour 

rotation, not according to the true sidereal day. 

Using this method, and the starting reference position, 6g can be calculated for 

any time in the future by propagating forward using the angular velocity of 0g, 

0.004178074622 deg/sec.    Any anomalies in the propagation, such as the gradual 
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deceleration of the Earth's rotation, precession, etc., can be minimized by picking a 

reference time closer to the propagation time, lessening the number of revolutions seen in 

the propagation. 

2.2.5 Sample 6g Calculation 

In this section, the truth of the above sections will be demonstrated by showing 

that a value for 9g, propagated from a reference point, matches actual observations to a 

relatively high precision (American Ephemeris...l980). The date I will choose to find 

will be midnight, December 31st, 1980. The reference position and time will be taken as 

one month prior, midnight, December 1st, 1980: 

THE REFERENCE DATE: 

Reference Date = December 1,1980 
Reference Time = 0 hr 0 min 0 sec (midnight) 
ReferenceJulianDate    : - 2444574.5 
RefModJulianDate    := ReferenceJulianDate   -2440000 

RefModJulianDate    = 4.5745« 103 

GgHours   : = 4 

GgMinutes   : = 40 

GgSeconds   := 1.299 

DegreesPerSecond 
24-3600 

DegreesPerSecond    =4.166666666666667« 10 3 

Ref GgDegrees   : = (GgHours -3600 -t- GgMinutes  -60 +- GgSeconds  ) -DegreesPerSecond 

RefGgDegrees   =70.00541249999999 

We will use MathCad Version 7 to propagate the angle of 6g which occurs at midnight on 

December 31, 1980, 30 days later. Notice that the reference date must be used in the 

calculation. Also notice that the original value for 9g is the total amount traversed, and 
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must be divided modulo 360 degrees to obtain the true value of 9g. 

PROPAGATION DATE 

Propagation Date = December 31,1980 
Propagation Time = 0 hr 0 min 0 sec (midnight) 

PropJulianDate    : = 2444604.5 

PropModJulianDate      : = PropJulianDate    -2440000 
3 

PropModJulianDate      = 4.6045 • 10 

PropagationTime     ■-( PropModJulianDate     - RefModJulianDate    )-24-3600 

PropagationTime    = 2.592-10 

PropagationRate 
360 

(23-3600 + 56-60 4-4.09054) 

3 PropagationRate     =4.178074621850468 «10 

GgDegrees    : - Ref OgDegrees   -t- PropagationTime    -PropagationRate 

GgDegrees   = 1.089957483233642 • 104 

Prop GgDegrees    : = mod (GgDegrees   , 360) 

Prop GgDegrees   = 99.57483233641506 

The Almanac gives its observation of 9g for the propagation date as follows: 

THE TRUE ANGLE FOR THE PROPAGATION DATE GIVEN BY 
THE AMERICAN EPHEMERIS AND NAUTICAL ALMANAC: 

Almanac Date = December 31, 1980 
Almanac Time = 0 hr 0 min 0 sec (midnight) 

ReferenceJulianDate := 2444604.5 

RefModJulianDate : = ReferenceJulianDate - 2440000 

RefModJulianDate = 4.6045« 103 

GgHours :=6 

GgMinutes :=38 

GgSeconds := 17.959 

DegreesPerSecond 
24-3600 

DegreesPerSecond  = 4.16666666666666?10~3 

Almanac GgDegrees := (GgHours-3600-t-GgMinutes -60+GgSeconds )-DegreesPerSecond 

Almanac GgDegrees = 99.57482916666666 
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Finally, the propagated angle must be compared with the observation from the Almanac 

to judge the accuracy of the algorithm. 

DIFFERENCE BETWEEN PROPAGATION ANGLE AND ALMANAC ANGLE: 

9gDegreeDifference : = Prop9gDegrees - Almanac 9gDegrees 

GgDegreeDifference = 3.16974839620343M0~6 

From this, we can see that in the period of 30 days, 6g can be accurately predicted to at 

least 0.0005% error from the true angle. This indicates a predictable accuracy below 10 

meters at the Earth's surface over a time propagation of 30 days. 

2.2.6 Accuracy 

There are some problems with predicting 6g too far into the future. Natural 

occurring anomalies that are difficult to model will invariably affect the true angle 

between the Greenwich Meridian and the Vernal Equinox. Precession, nutation and the 

Chandle wobble of the Earth's rotation axis, all of which cause the Earth to "wobble" on 

its axis rather than cleanly spin, will affect the rate of angular separation slightly. These 

effects are extremely difficult to model, and could be the topic of another study. They 

can be mitigated, however, by choosing reference date that is close to the mission date. 

Very little anomalous precession occurs within one week. And the closer the date, the 

more accurate a propagation of 6g will be. It is probably unwise to choose a reference 

date that is more than a couple months old, as new references are constantly being made, 
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and reference dates might easily be ignored, growing ever more out of date, if their 

update is not made a standard practice. 

2.3 Finding the Platform in the ECI frame 

All that remains for finding the coordinates of the platform in the ECI frame is to 

find the coordinates of the platform in the ECEF frame, and then do a single rotation 

using the value of 6g that is determined according to the methods described previously. 

R@+h= Radius of the Earth + Altitude of the Aircraft 
x   = ECEF X coordinate of platform 
y   = ECEF Y coordinate 
z   = ECEF Z coordinate 
X    = Degrees longitude 
d    — Degrees latitude 

¥■   ^ECEF 

Figure 2.1. Locating Platform in ECEF Frame 

Figure 2.1 illustrates the conversion from latitude, longitude and altitude to X, Y and Z in 

the ECEF frame. From the figure it can easily be seen that: 

a = (R(B+h)cos(S) (2.4) 
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and: 

x = (a) cos(A) 

y = (a)sin(/l) 

z = (Rm+h) sin(<5) 

(2.5) 

(2.6) 

(2.7) 

From these relations, it is seen that the coordinates of the platform in the ECEF frame 

are: 

RECEF — 

(R e +h) cos(<5) cos(A) 

(R e +h) cos(<5) sin(>l) 

(Re+h)s'm(ö) 

I- *-lT 

X 

Y 

z 
(2.8) 

To translate this position vector into the ECI coordinate frame, we use a rotation matrix 

about the Z axis, using 9g as the rotation angle: 

RECI = 

COS0«   -s'mdg   0 

sindg     cosdg    0 

0 0        1 

• RECEF (2.9) 

From here, we also obtain the satellite's position vector by using a time propagator to 

determine the position at the current time. Fortunately, there are already ephemeris 

propagators in existence, and this project will use SGP4 Version C3.01 developed by Air 

Force Space Command. 

2.4 Locating the Satellite 

It should be noted here that SGP4 is used because a better propagator could not be 

found in the public domain. SGP4 only models general perturbations, and therefore will 

not be very accurate when propagating a satellite ephemeris over long periods of time. 

Unfortunately, this project has limited resources, and therefore cannot branch off into 
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intensive testing of the propagator that is used. This task could be the subject of a thesis 

within itself, because accuracy depends upon many factors including the type of orbit, the 

solar weather, the time of propagation and so on. Almost all of the errors introduced into 

SGP4's propagation estimates can be significantly reduced by limiting the amount of 

time over which the propagation occurs. This is done by ensuring that the Two-Line 

Element (TLE) sets used as inputs to the propagator are timely, preferably less than 24 

hours old. This will ensure that the propagator on which this project relies will not have 

to propagate over a large amount of time, each hour of which increases the position error. 

2.5 Use of a Time Propagator 

Both the ABLPA Preprocessor and the ABLPA Main Processor depend upon 

fixing the current position and velocity vectors of a satellite through the means of a time 

propagator. The accuracy of the propagator has a direct correlation to the effectiveness 

of these programs. For instance, if the satellite's position can only be estimated within a 

first sigma error of + 500 kilometers, then the Main Processor will effectively see that a 

satellites error cross section covers a significant field of view, making it extremely 

difficult to find a window in which to fire. As mentioned previously, this error can be 

reduced by limiting the time through which position propagation occurs. Error can also 

be reduced by finding a better propagator that handles special perturbations. As of the 

writing of this thesis, Air Force Space Command is working on the completion of just 

such a propagator. It is estimated that this Special Perturbations (SP) propagator will be 

completed by the summer of 1999. This propagator may find suitable use as a substitute 

for SGP4 in both the Preprocessor and the Main Processor. It may, however, prove to be 

too complicated for use in the Main Processor. The SP propagator, while more accurate 
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than SGP4, will almost certainly prove to be far more complicated. It will require more 

input parameters, and will take longer to execute. This is not a problem for the 

Preprocessor, as the Preprocessor is not narrowly constrained by the amount of time in 

which it needs to run. However, the Main Processor needs to execute quickly, in "real- 

time". If the SP propagator requires an extra 0.1 seconds to run, this translates into an 

extra 10 seconds minimum for the Main Processor running with a 100-satellite TLE set. 

This is clearly unacceptable, as there cannot be a 10 second lag in the fire control system. 

Therefore any replacement for SGP4 will be required to pass this hurdle. 

2.6 Comparison of Satellite to Platform Position Vector 

Now that we know R, the position vector of the platform in the ECI frame, and r, 

the position vector of the satellite in the ECI frame obtained from SGP4, we can compare 

the two, looking to see whether the satellite crosses the artificial horizon of the platform. 

This can be done by finding D, representing the component of r in the R direction: 

D = rsat 
Ra 

\Ra> 
(2.10) 

It is then a simple matter to compare the magnitude of D with the magnitude of R. If the 

RECI = Platform position vector 
in ECI frame 

rEci= Satellite position vector 
in ECI frame 

D    = C omp onent of r 
inREC, 
direction 

Figure 2.2. Illustration of the Comparison Between R and r. 
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magnitude of D is greater than the magnitude of R, then the satellite must be above the 

artificial horizon of the platform, and is therefore in view. 

2.7 Evaluating Time-to-Rise 

Thus far, it has been determined whether or not the satellite is in view of the 

platform, but it has not been determined if the satellite might appear above the horizon at 

a later point in time. We are interested in how long the satellite takes to cross the horizon 

because there is a slice of time after the Preprocessor runs when a satellite could rise and 

not be noticed (until the next run of the Preprocessor). Therefore, we would like to 

isolate those satellites that are due to rise before the next run of the Preprocessor, so that 

these satellites can also be included in the list sent to the Main Processor. To do this is 

apparently very simple. It is fairly easy to approximate the rate of change of the 

magnitude of the D vector discussed earlier and compare the change in D to the Time 

Until the Next Run (TUNR). Doing so should reveal a fair estimate of whether or not the 

satellite is due to rise before the next run of the Preprocessor. But there is a small 

problem. There may be a case when the satellite never rises. Such is the case when the 

platform is at the north pole and the satellite is in an equatorial orbit. This is also the case 

when then platform is on the equator and 90 degrees from a polar orbiting satellite. In 

fact, there are many cases like this when the rate of change of D is not exactly applicable 

to our analysis, because the satellite does not move toward or away from the platform in 

the short time under consideration. The solution to this problem is to weed out all 

ephemerides that never cross the artificial horizon plane of the platform before we 

evaluate the time to rise of the satellite. 
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2.8 Ephemeris Clipping 

The idea of the Ephemeris Clipping Algorithm (ECA) is fairly straightforward. 

The ECA simply throws out all satellite ephemerides that do not cross the artificial 

horizon plane in the current orbit. Thus, in the case of Figure 2.3, Ephemeris 1 would be 

discarded while Ephemeris 2 will be further evaluated. 

Horizon 
Plain 

I,,,;,,,,,,,,,,,,,n ■■»rtifrjEaiM»iT<Wgi> 

w MM 

Ephemeris 

Ephemeris 2 

Figure 2.3. Ephemeris Clipping Illustration 

It is important to note that this algorithm only evaluates a satellite in its current orbit, and 

does not propagate the ephemeris in time. Therefore the orbital elements that are used to 

evaluate this orbit must be propagated (also using SGP4) to the current time. It is 

therefore assumed that the ephemeris does not change significantly in the time between 

runs of the Preprocessor. Although precession of the Earth may change the attitude of the 

platform with respect to the satellite slightly in this time, the variations will be slight if 

the time between runs is kept below 5 minutes. 
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2.8.1 Run Intervals 

The preprocessor is designed to run at given intervals, processing a new set of "at- 

risk" satellites during each interval. The interval time should be long enough so that the 

preprocessor can easily process all ephemerides which are fed to it, and still short enough 

so that it can eliminate a majority of the satellites which will not be seen during the 

interval. For example, picking an interval of one second may not be wise, because the 

preprocessor may not be able to run through the enormous amount of data in that time 

frame. Furthermore, picking an interval time of 90 minutes may not be very beneficial, 

because many Low-Earth Orbiting (LEO) satellites have periods of roughly 90 minutes. 

Therefore if a satellite is still an hour away from being visible, it will still have to be 

looked at by the Main Processor during the fire sequence. For the purposes of this study, 

5 minutes will be used as a nominal time interval. Thus, the preprocessor will generally 

use the current time as the start of the processing time interval, and the current time plus 

5 minutes as the end of the processing interval. This will mean that the preprocessor 

must be run every 5 minutes at a minimum, but may be run more often, if desired. 

2.8.2 Ephemeris Clipping Algorithm 

The geometry of the plane-clipping problem is illustrated in Figure 2.4. For each 

satellite being evaluated, we are given as inputs the orbital elements of the satellite and 

the time interval we are evaluating. Our goal is to find whether or not the satellite crosses 

the platform's plane of view. As a beginning, the minimum distance d, between the 

platform and the satellite orbit needs to be determined. This is logically the line that 

forms a right angle with the orbit plane when drawn from the platform to the orbit plane. 
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6g    = Degrees between Greenwich Meridian and Vernal Equinox 
GH-V = Argument of Perigee + the True Anomaly of the satellite 
Y   = Angle b etween as cending node of satellite and the p latform 
y     = Vernal Equinox (First Point of Aries) 
d    = Closest pass of the satellite orbit 

to the platform 
X    = Degrees longitude 

of the platform 
8    = Degrees latitude of 

the platform 
Q   = Right Ascension 

of the satellite 
i     = Inclination of 

the satellite 

Satellite Orbit 

Greenwich 
Meridian 

Figure 2.4. Preprocessor Spherical Geometry Illustration 

The two spherical triangles illustrated in Figure 2.4 are used to determine d in degrees. 

From the figure, it can be seen that *F represents the spherical angle from the ephemeris 

right ascension to the platform. Using the spherical right triangle formulae the length of 

*P can be determined by: 

cos(xF) = cos((5)cos(ß-%->l) (2.11) 

Once *F has been found, oc, or the angle between VP and the equator, is easily found with 

the equation: 

cos(a) = tan(Q-Og-X)cotC¥) (2.12) 

The angle between *F and the ephemeris propagation direction is denoted as ß. As shown 

in the following examples, the method for finding ß will differ depending upon location. 
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Case 1 
Northern Hemisphere 
Prograde orbit 
0 < (a + i) < 90 

gß= a + i 

■m Ky 
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Case 2 
Northern 
Hemisphere 
Prograde orbit 
90 < (a + i) < 180 
ß= 180- a-i 

"nr 

/? 

•% 
iiiik 

Case 3 
Northern 
Hemisphere 
Prograde orbit 
180<(a + i)<270 
ß= (a + i)-180 

Figure 2.5. Northern Hemisphere, 
Prograde Orbit Cases 

2.8.3 Finding Beta 

Unfortunately, ß cannot be found with a 

single equation. As a matter of fact, it must be 

found by looking at twelve individual geometric 

cases which serve to describe the relationship 

between ß, a, and i. 

The relationship is not a trivial one. It is 

governed by the hemisphere of the Earth (northern 

or southern) in which the platform lies, the slope 

of the orbit (prograde or retrograde), and the 

position of the platform with respect to the 

ephemeris plane. 

The first three cases deal with the possibility that 

the platform is in the northern hemisphere, and the 

inclination of the satellite orbit is less than 90 

degrees (a prograde orbit). As the graphical 

depiction shows, ß can be three different values, 

depending upon where the platform lies with 

respect to the ephemeris path. For instance, in 

Case 1, 

0<(a + ß)<90 
ß=a + i (2.13) 
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Case 4 
Northern 
Hemisphere 
Retrograde orbit 
90<(a + i)<180 

■ ß= 180 - a-i 

Likewise in Case 2: 

90<(a + /)<180 

ß = l80-a-i (2.14) 

and in Case 3: 

^1; ^ 
180 < (a + i)<270 

j8=a + i'-180 (2.15) 

Case 5 
Northern 
Hemisphere 
Retrograde orbit 
180<(a + i)<270 
ß= (a + I)-180 

Case 6 
Northern 
Hemisphere | 
Retrograde orbit I 
270<(a + i)<360 | 
ß= 360-(a + I)     1 

^ 

While cases 1 to 3 deal with a prograde orbit, cases 4 

to 6 describe the relationship between a platform in 

the northern hemisphere and a satellite with a 

retrograde orbit. One might be tempted to jump to 

the conclusion that finding ß would be the same as in 

cases 1 to 3, however, as can be seen in Figure 2.6, 

the relationship is not the same. In Case 4, where 

the platform is located below the retrograde orbit and 

above the equator: 

90 <(a + 0<180 

ß = lS0-a-i (2.16) 

Similarly, in Case 5: 

180 < (a + i)<270 

ß=a + i-l80 (2.17) 

And in Case 6: 

Figure 2.6. Northern Hemisphere, 
Retrograde Orbit Cases 

270 < (a + /)<360 

ß=360-a-i (2.18) 
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Case 8 
Southern Hemisphere 
Prograde orbit 
0 < (a - i) < 90 
ß = a-i 

JNHMHH 

Case 7 
Southern Hemisphere 
Prograde orbit Just as there are six possible configurations in the 

northern hemisphere, there are also six 

configurations in the southern hemisphere, three for 

prograde orbits and three for retrograde. Cases 7 to 

9 illustrate the possible scenarios for a platform in 

the southern hemisphere with a prograde satellite 

orbit. For Case 7: 

For Case 8: 

-90<(cc-0^0 

ß = i-a 

0<(a-i)<90 

ß = a-i 

(2.19) 

(2.20) 

And for Case 9: 

Case 9 
Southern Hemisphere 
Prograde orbit 
90<(a-i)<180 
ß = 180 + i-a 

s 
90 < (a-i)£180 

/J = 180 + /-a (2.21) 
lil 

The last three cases illustrate the possibilities in the 

southern hemisphere combined with a retrograde 

orbit. For Case 10: 

-180 <(«-/)<-90 

ß = lS0 + a-i (2.22) 

For Case 11: 

Figure 2.7. Southern Hemisphere, 
Prograde Orbit Cases -90<(a-i')£0 

ß = i-a (2.23) 
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Case 10 
Southern 
Hemisphere 
Retrograde orbit 
-180<(a-i)<-90 
ß= 180 + a-i 

d,'    ay»    v 

Case 11 
Southern Hemisphere 
Retrograde orbit 
-90 < (a - i) < 0 
ß=   i-a 

Case 12 
Southern 
Hemisphere 
Retrograde orbit 
0 < (a - i) < 90 
ß = a-i 

And finally, for Case 12: 

0<(a-/)<90 

ß=a-i (2.24) 

The reader might notice a few patterns from 

the twelve possible scenarios presented here. First, 

notice that all cases can be described by (a + i) in the 

northern hemisphere, and (a - i) in the southern 

hemisphere. Second, despite the fact that there are 

twelve possible position scenarios with respect to 

hemisphere, platform and satellite orbit, there 

appears to be only eight independent equations for 

determining ß. Table 2.1 shows all equations for ß 

listed together.   Notice that some of the cases have 

the same equation for determining ß. From this 

table it becomes readily apparent the true 

relationship between a, i, and ß. This final 

relationship is illustrated in Table 2.2. It is these 

equations in Table 2.2 that are used to determine ß 

in the preprocessor software. 

Figure 2.8. Southern Hemisphere, 
Retrograde Orbit Cases 
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Table 2.1. A Summary of Twelve Geometric Cases for Finding ß 

Hemisphere Orbit Type (oc+i) (a-i) ß 

North Prograde 0<(a+i)<90 N/A ß = a + i 

North Prograde 90<(a+i)<180 N/A ß=180-a-i 

North Prograde 180<(a+i)<270 N/A ß = a+i-180 

North Retrograde 90<(a+i)<180 N/A ß= 180-a-i 

North Retrograde 180<(a+i)<270 N/A ß = a + i-180 

North Retrograde 270<(a+i)<360 N/A ß = 360 - a - i 

South Prograde N/A -90<(a-i)<0 ß = i-a 

South Prograde N/A 0<(a-i)<90 ß = a-i 

South Prograde N/A 90<(a-i)<180 ß=180 + i-a 

South Retrograde N/A -180<(a-i)<-90 ß = 180 + a-i 

South Retrograde N/A -90<(a-i)<0 ß = i-a 

South Retrograde N/A 0<(a-i)<90 ß = a-i 

Table 2.2. The True Relationship Between ß, a, and i 

Hemisphere (a+i) (a-i) ß 

North 0  <  (a+i)<  90 N/A ß = a + i 

North 90  <  (a+i) <  180 N/A ß= 180-a-i 

North 180 < (a+i)<  270 N/A ß = a + i-180 

North 270 < (a+i)<  360 N/A ß = 360 - a - i 

South N/A -180 < (a-i)<  -90 ß= 180 +a-i 

South N/A -90 < (a-i) <  0 ß = i-a 

South N/A 0 < (a-i)<  90 ß = a-i 

South N/A 90 < (a-i)<  180 ß=180 + i-a 
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The final distillation of relationships between ß, a, and i shown in Table 2.2 no longer 

uses the orbit type as a reference, because the emphasis is more rigorously based upon the 

combination of oc+i and cc-i on ß. 

2.8.4 Resolution of the Satellite Critical Radius 

Knowing ß and *F allows d to be calculated by following another rule for 

spherical triangles: 

sin(rf) = sin(/J)sinOF) (2.25) 

The true anomaly v can be extracted in a similar fashion, assuming that the argument of 

perigee, co, the minimal distance, d, the angle, ß, and the distance, *F, in degrees are all 

known: 

sin(v + co) = tan(d) cot(ß) (2.26) 

cos(v + co) = cosC¥) I cos(d) (2.27) 

v = (co+v)-co (2.28) 

Notice that finding both the sine and cosine in Equations 2.26 and 2.27 allow a way to 

resolve quadrant errors which would arise from using either the sine or the cosine alone. 

Unfortunately, v+co can be anywhere from 0 to 360 degrees. The sine or cosine alone can 

only pinpoint 0 to 180 degrees. Although the method for dealing with quadrant errors is 

straightforward, the method used for this study is listed here for clarity in Table 2.3. 

From the true anomaly, the scalar radius, rsat, of the satellite orbit at the closest point may 

be determined.  The value rstU represents the distance of the satellite from the center of 

the Earth at the point where the satellite is closest to the platform. Assuming that the 
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Table 2.3. Resolution of Quadrant Ambiguities 

GIVEN sin(x) = = y 
cos(x) = z 

IF sin ■\y) 
x = 

is positive 
sin'Cy) 

or 0 AND cos- '(z) is positive or 0 THEN 

IF sin '(y) 
X = 

is positive 
180° - sin- 

or 0 AND 
l(y) 

cos" \z) is negative THEN 

IF sin '(y) is negative AND cos" '(z) is positive or 0 THEN 
X = 360° - sin- (y) 

IF sin '(y) 
X = 

is negative 
180° +sin" 

AND cos" 

'(y) 
'(z) is negative THEN 

eccentricity, e, and the semi-major axis, a, are known, rsat can be found by applying the 

equation for a conic section: 

Tsat = Ü ■ 
d-e2) 

l + ecos(v) 
(2.29) 

Now that rsat is known, it must be compared to the critical radius, rcrit, to determine 

whether the satellite crosses the platform viewing horizon. From Figure 2.9 it can be 

seen that the critical radius is defined by: 

rcrit = (R e +h) I cos(d) (2.30) 

If the satellite orbit radius measured from the center of the Earth is greater than the 

critical radius for the orbit, then the satellite will have to be further processed by the 

preprocessor in order to determine whether the ephemeris reaches the platform horizon 
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R®+h = Radius of the Earth + the height of the platform 
d       = Degree distance of closest approach to the satellite 
rcrit    = Minimum radius from Earth center to p latform horizon p lain 

r„ 
= Elevation angle of satellite above horizon 
= Satellite distance from 

Earth center 
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y- 

R®+h 
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Figure 2.9. Comparison of Satellite Radius with the Critical Radius 

plane during the specified time interval.   If the critical radius is larger, however, the 

ephemeris can be discarded as out of range. 

2.9 Visibility of the Satellite 

To recap, the intention of this preprocessor analysis is to find all satellites on the 

input TLE file that will be visible to the platform from the current time until the time that 

the preprocessor is next run. The preceding discussion has shown that we can determine 

whether the satellite is in view of the platform, and whether the satellite's ephemeris is in 

view. This leaves us with four possible cases concerning the visibility of the satellite 

from the platform. These four cases are summarized in Table 2.4. The first case is that 

we have found that the satellite is currently in view, in which case our analysis stops and 
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this satellite is included in the input TLE file to the Main Processor. The second case is 

that neither the satellite nor its ephemeris is visible before the next run of the 

preprocessor, in which case the satellite is thrown out because it is always out of range 

for the time window of our analysis. The third and fourth cases require a bit more 

explanation. In the third case, the satellite is not in view, but its ephemeris is in view. As 

stated previously, this presents a dilemma whereby the satellite could move into view of 

the platform before the Time Until Next Run (TUNR) of the preprocessor. In this case, 

the satellite could be in view during a window of time after the preprocessor is run, but it 

may not be included in the list of satellites sent to the main processor until the next run of 

the preprocessor has been made. 

Table 2.4. Possible Outcomes of Check to See if Satellite is Visible 

Case Satellite Satellite Ephemeris 
Path 

Time To Rise Visible To Platform? 

1 In View In View N/A YES 

2 Not In View Not In View N/A NO 

3 Not In View In View <TUNR YES 

4 Not In View In View >TUNR NO 

To catch this minor error, we must make a check to ensure that the satellite is not going 

to rise above the artificial horizon of the platform, at least until after the next run of the 

preprocessor. If this is the case, then our satellite falls into case 4, otherwise, it must fall 

within case 3. 
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2.10 Checking Time-to-Rise of the Satellite 

There are many ways to check the approximate time until the satellite rises above 

the artificial horizon. We will benefit from realizing that, for our application, we are only 

RECI= Platform position vector in 
ECI frame 

rECi= Satellite position vector in 
ECI frame 

D    = Component of rECI in RECI 

direction 
VECI=Velocity vector of platform 
vECI = Velocity vector of satellite 

Figure 2.10. Vectors Used to Approximate Rise Time 

interested in the case where the satellite is very close to the artificial horizon, because the 

preprocessor, as mentioned before should be run every few minutes. Referring to Figure 

2.10 above, we would like to find out how much time passes before the vector D has a 

greater magnitude than the position vector of the aircraft, RECI- TO do this, we must find 

the rate of change of D with time: 

Time to Rise = 
D-R 

D 
(2.31) 

Finding the derivative of D is a tricky process, but, because we are interested in only the 

time when the satellite is a few minutes away from the artificial horizon, we can find an 

approximation for the derivative of D: 

D~vEa-R + rECI 
ECI 

\Rm+h\ 
(2.32) 
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In this equation, VECI is the satellite velocity vector. R is the unit vector in the direction 

of the platform position vector. VECI is the platform velocity, while r is the satellite 

position vector; R© is the radius of the Earth, and h is the height of the platform above 

the surface of the Earth. All of these vectors are in the ECI frame. We can easily obtain 

vEci from our time propagator, and both the satellite and platform position vectors have 

already been calculated. This leaves only the velocity of the platform in the ECI frame to 

calculate. We must assume that we are given the velocity of the aircraft in the ECEF 

frame. Conversion to the ECI frame involves accounting for the angle, 6g? that currently 

separates the rotation of the ECEF frame with respect to the ECI frame, as well as the 

instantaneous rate, GO, at which this angle is increasing. In short the velocity of the 

aircraft in the ECI frame will be: 

V     = v ECI 

cos6g 

sin6g 

0 

-sin 6^ 

cosOg 

0 

■V       + Y ECEF T 

0 

0 
27rrad 

86164.09054 sec 

xR ECEF (2.33) 

Once the rate of change of D has been determined, the approximate rise time from 

equation 2.31 can be compared to the Time Until Next Run (TUNR). 

If TUNR > Time To Rise -> Include satellite in list given to Main Processor 

If TUNR < Time To Rise -> Throw out satellite because it is not visible 

2.11 Preprocessor Methodology Conclusion 

The goal of the ABLPA Preprocessor is to weed out all satellites that are not 

visible during a given time period. After running the software that models the algorithm 

described in this chapter, the results indicate that, given a worst-case scenario, at least 
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75% of the active satellites in the input file are discarded. This leaves 25% or less of the 

active satellites to be analyzed by the Main Processor. After the Preprocessor has 

finished, it sends the satellites that are in view to an output file, where they can be read by 

the Main Processor when the need arises. A more extensive analysis of the Preprocessor 

will be addressed in Chapter rv. 

\ 
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III. ABLPA Main Processor Methodology 

We have just finished discussing the ABLPA Preprocessor, which handles an 

input file of satellite Two-Line Element (TLE) sets, and forms an output file of all 

satellites in that list that are in view of the laser platform during a given time. This 

chapter will discuss the ABLPA Main Processor, which is designed to take this 

"shortened" list of satellites and perform real-time calculations to determine if any of 

these satellites will fall within the predicted arc of the laser during a given fire sequence. 

The first step in this calculation sequence is to determine the location of each satellite 

with respect to the platform. 

3.1 Targeting the Satellite 

Up to now, we have looked at the positions of both the platform and the satellite 

as coordinates in the ECI frame. Now, however we wish to view the satellite as it 

appears with respect to the platform. This is done easily by switching to a new platform- 

centered coordinate frame. 

3.1.1 The REN frame 

This new platform-centered frame will be referred to as the Radial/East/North 

(REN) coordinate frame. The three right-handed axes will consist of the line from the 

platform to the north pole (the line tangent to the path as traveled across the spherical 

surface of the Earth), a line traveling due East, and a radial component "up" from the 

center of the Earth.   In this coordinate frame, the platform position will be made the 
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center by subtracting its position from other bodies also referenced in the REN frame. A 

representation of this new coordinate frame is shown in Figure 3.1. Using this frame of 

reference, a new position vector, p, will refer to the position of the satellite with respect 

\N RECI = Platform position vector in ECI frame     1| 
rEci= Satellite position vector in ECI frame 
P = rEci" RECI 

or the satellite 
in the REN frame. 

Figure 3.1. Derivation of p in ECI Frame With Respect to the REN Frame 

to the platform. The vector p can be derived from the two vectors RECI, the platform 

position in the ECI frame as referenced from the center of the Earth, and TECI» the satellite 

position vector in the same frame: 

where: 

PECI  ~ TEC1       **-ECI 

PEC!  =Pxi+PyJ + Pzk 

(3.1) 

(3.2) 

we want to obtain p in the REN frame: 

pREN=PrR + PeE + PnN (3.3) 
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To find this vector in the REN frame, we must first find the conversion matrix that will 

take us from the ECI coordinate frame to the REN frame. This coordinate transformation 

ix is simply: 

R i   R j   R k M 
PREN  ~ Ei    Ej   E k Py 

N-i   N j   N-k [P'l 

(3.4) 

While the i, j, and k unit axis' of the ECI frame have been defined already, the R, E, and 

N unit axis' of the REN frame have not yet been rigorously defined. The R unit axis 

direction can be seen to be the same direction as the position vector of the aircraft in the 

ECI frame (pointing up from the center of the Earth): 

R= R£CT 

R 
(3.5) 

EC1\ 

The E unit direction can be derived from the angular motion of the Earth crossed with the 

aircraft position vector direction: 

|,_ (Q@xREa 

fl^e x " ECI\ 

(3.6) 

Similarly, because the REN coordinate frame is right-handed: 

N = RxE (3.7) 

Armed with this information, p can now be found in the REN frame. 
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3.1.2 Determining Laser Position in the REN Frame 

Now that we have the position vector of the satellite with respect to the aircraft, it 

is a fairly easy matter to find the unit position vector of the laser. Assume that the laser 

Azimuth (Az) and Elevation (El) will be known. Az will be given in degrees east of 

north. El will be given in degrees above the platform artificial horizon. 

Azimuth =Az 
Elevation = El 

Figure 3.2. Laser Position in the REN Frame 

Looking at Figure 3.2, it is fairly straightforward to derive the unit position vector L in 

the REN frame. L describes the unit direction in which the laser is pointing in the REN 

frame, and has unit magnitude: 

L = 

sin(£7) 

cos(£/)sin(Az) 

cos(Z?/)cos(Az) 

(3.8) 

With these two vectors, p and L, we now have a way to compare the position of the 

satellite with the position of the laser turret, both of which are given in the REN frame. 
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3.2 Position Error 

Up until this point, we have been addressing the position of the satellite and laser 

arc as points that are both fixed and known. However, applying this to an operational 

setting will quickly reveal that the exact position of both the laser and the satellite are 

only known within some degree of error. These errors introduce a growing uncertainty 

that must be modeled and accounted for if we are to reliably deconflict the path of the 

laser with the ephemeris of the satellite. There are a number of uncertainties that the 

reader may have noticed thus far. The first set of uncertainties involve the positions of 

the platform (or laser turret), satellite, and the missile. Our current level of technology 

allows us to establish and forecast positions in the ECI frame fairly accurately, but each 

position estimate or forecasted position estimate will still have an uncertainty. The 

second set of uncertainties concern the laser itself. Each of these errors will be addressed 

here. 

3.2.1 Platform Position Error 

The laser platform, in the case of the ABL program, is a Boeing 747-400 airframe 

equipped with a Honeywell GPS package. According to Honeywell, this GPS system 

will be accurate to within 10 meters. This being the case, we will have an instantaneous 

position error of only ± 10 m or .01 km. This error is fairly small. However, given the 

nature of the Predictive Avoidance mission, we have the need to forecast the plane's 

position into the future by approximately 20-30 seconds, in order to fully encompass the 

necessary laze time to destroy the missile. Recall that the firing solution must be derived 

in the second before the laser fires, so that the laser can fire for an uninterrupted amount 

of time. This amount of time is not expected to exceed 30 seconds. Therefore, we must 
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also know the path of the airplane in those 20-30 seconds. It is assumed by the author 

that the trajectory of the platform will be somehow actively controlled by an autopilot, so 

that any deviations from the planned course will be corrected in real-time. Given this 

type of active control system, the author assumes that the position error of the plane, 

working in conjunction with the Honeywell GPS, should not exceed ± 50 meters or 0.05 

kilometers. 

I.S 

~\ 

y s. 

Figure 3.3. Computing the Error Angle Contributed By Platform Position 
Error 

Consider the illustration given in Figure 3.3. The inputs that are currently known are the 

absolute range to the satellite, the range to the missile, Rm, the position error of the 

platform, Rp, and the approximate intermediate distance between the missile and the 

satellite, Ri- Notice that R; can be approximated, by subtracting Rm from the absolute 

range to the satellite when the satellite is close to intersection with the laser. The goal is 

to find the effective error angle, Ep, contributed by the unknown location of the platform. 
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From the initial known parameters, the downrange spread distance, Sd, can be 

approximated by: 

'd  ~ Sd=-Z—!- (3.9) 
K 

Knowing Sd allows the computation of the effective error angle Ep: 

^=tm"1(]^) (3-10) 

It can be seen here that Ep will have a bigger impact on the overall error angle as the 

range to the satellite increases. As the satellite moves farther away from the platform, the 

error angle due to satellite position uncertainty will decrease, while Ep will remain 

constant. Thus, Ep will play an ever more prominent role as the range to the satellite 

increases. 

3.2.2 Satellite Position Error 

The satellite position error is the dominant position error in the error budget for 

almost all cases. The position of the satellite, as mentioned before, is a forecast derived 

from SGP4. In the period of 20-30 seconds, the error ellipsoid in which the satellite can 

be expected to reside will not change significantly. However, from the outset, the error 

ellipsoid will be big. Without conducting a thorough study of SGP4, there is no concrete 

way to establish an exact error, or rate of change of error. Furthermore, at this time we 

do not know how current the satellite input to SGP4 will be. If SGP4 is expected to 

propagate over a period of hours, the error will be significantly less than if propagation is 

conducted over a period of days or weeks. In the absence of accurate data, and realizing 

that the propagation is likely to be less than a day, it will be assumed that the position of 
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the satellite is established at ± 10000 meters or 10 km. Given 30 years of satellite 

tracking history with SGP4, this position error estimate appears to be a reasonable 

average. The satellite position error will also be a parameter in the software that can be 

changed as the customer, if deemed necessary. Assuming that the position error radius of 

the satellite, Rs, can be approximated, the error angle contributed by the satellite will be: 

E, =tan-1(£r) (3.11) 
\P\ 

Where Ipl represents the range to the satellite. Notice that this error angle will decrease 

as the range to the satellite increases. 

3.2.3 Missile Position Error 

Up to this point, the missile's position has been thought of only as an extension 

from the laser turret. At the time of laze, the turret line of sight must be positioned on the 

missile such that there is no more than ±1-2 meters of error. If this is not so then the 

laser will never reach its target, and the ABL program in general is in serious jeopardy. 

The range to the missile is also assumed to be known within 1-2 meters. What we do not 

know is the behavior of the missile when forecasted over time. It has been assumed that 

the turret slew rates currently used to keep the missile locked will not change over our 

30-second forecast span. Hence, with regard to the turret slew rate, S, we must assume 

that: 

S forecast  =^ lock ™d (3.12) 

s       =s forecast lock 

It is not necessarily reasonable to expect that this will be true. The ABL platform is 

intended to intercept a missile during its initial boost stage, where it is the most 
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predictable and vulnerable. If this is the case, then the position error of the missile is 

orders of magnitude less than the position error of the satellite, with a position error 

sphere of roughly ± 50 meters. 

^ 

~~Y^ 

Figure 3.4. Illustration of the Error Angle Introduced by Uncertain 
Missile Position 

Referring to Figure 3.4, if the radius of this missile position error sphere, Mp, and the 

range to the missile, Rm, are known, then the error angle introduced by the missile 

position uncertainty, Em, will be: 

, M„ 
Em =tan_1(—p-) (3.13) 

Notice that the error angle will increase as the platform gets closer to the missile. Also 

notice that, if the missile behaves in such a way that significant discrepancies are 

introduced into its trajectory, then the position error can easily increase from 50 meters to 
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5 kilometers. There are two ways to account for this error in a forecast. The first method 

is to introduce a significantly larger missile position error into the forecast, which will 

inevitably cause a much bigger error angle in our forecast. This is not very desirable, as 

it increases our error angle as much as two full degrees, and gives the user a smaller 

space with which to work. The second method is to recompute in mid-laze, should the 

lazing parameters stray considerably from initial conditions. While this may seem at first 

to also be undesirable, it can seen that this method tightens the error angle considerably, 

allowing a substantially reduced chance that a forecast will result in a satellite hit. If no 

satellites were previously forecast to be intersected, then rerunning the Main Processor in 

mid-laze presents only an extremely small chance of forecasting an intersection of a 

satellite. The alternative to recomputation is to incorporate a position compensation error 

of two or more kilometers into the position error of the missile, adding whole degrees to 

our error angle. 

3.3 Laser Diffraction Errors 

Normally one would think of a laser beam as being fairly concentrated, without 

much diffraction error. This is essentially the case between the platform and the missile, 

where the range is only 200 km or so, and the beam is "focused" on the target. However, 

when dealing with the range to an orbiting satellite, with distances of six Earth radii 

(GEO altitude), beam diffraction has the potential to become a significant factor. There 

are two areas that we must consider when attempting to determine how a beam will 

spread out over long distances. The first area deals with intrinsic errors within the laser 

itself, and the second area covers optical diffraction and divergence. 
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3.3.1 Laser Intrinsic Spread Error 

In theory, a laser should have no intrinsic spreading error, as every photon is at 

the same wavelength and has the same propagation direction. In practice, however, every 

laser has imperfections in its optics and propagation that cause the beam to diverge. 

These divergent patterns may be caused by very small imperfections in the alignment of 

the optics, transmission medium, or by a host of other factors. Unfortunately the intrinsic 

spread error of the ABL lasers have not been made available to us, and so the role it plays 

cannot be accurately discussed. However, we must assume that a laser designed to hit a 2 

meter square target at 200 km is also designed to have a very small intrinsic error. 

Therefore we will assume this spread to be small enough to ignore, when compared with 

the significantly larger error angles introduced by position errors. It is mentioned here 

only for the purposes of pointing out that it has a potential for becoming a significant 

error source. 

3.3.2 Optical Diffraction and Beam Divergence 

The ABL High Energy Laser (HEL) is a "strongly focused" laser. That is, the 

optics are designed so that the beam will narrow from the aperture diameter of 

approximately 1.5 meters to the theoretical "diffraction-limited spot-size", which is the 

smallest possible spot to which the laser can focus to. An illustration of this is shown in 

Figure 3.5. From this simple illustration it can be seen that the laser beam diverges in a 

parabolic path, but slowly conforms to a diffraction angle, GDIFF- The angle, ODIFF can be 

modeled by the equation: 

<W=— (3-14) 
TtW2 

Where X is the wavelength of the laser (in this case assumed to be 1.315 \\m for the HEL, 
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W1   = Radius of narrowest point (waist) of the light amplifier 
W2   = Radius of narrowest point (waist) of the focused beam 
eDIFF=Diffraction angle approximating the divergence of the beam 
/      = focal length (distance to the focus point) 

Figure 3.5. Exaggerated Divergence of a Highly Focused Beam 

1.03 |im for the TILL, or 1.06 |xm for the BELL), and w>2 is the radius of the narrowest 

part of the focused beam. M>2, in turn can be found if wi is known: 

7TW, 
(3.15) 

Where wi represents the radius of the narrowest point, or "waist" of the radiation 

amplification chamber of the laser, and/is the focal length. Unfortunately, we are not 

privy to the specifications of the laser mechanism, so we need to find another way to 

estimate W2. We can, for instance, assume that the designers of the ABL HEL system 

will wish to focus the laser as close to the theoretical limit as possible, approaching the 

diffraction-limited spot size: 

Spot Size = / tan(—) (3.16) 
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Setting W2 equal to the diffraction limited spot size should present a fairly close estimate 

to the actual value of W2, and would yield the equation: 

0«FF= ^T (3'17) 

7cf tan(—) 
D 

In this way, we can approximate the beam dispersion by knowing only the focal length 

and aperture size of the laser. 

3.4 Other Error Considerations 

There are other errors that can pop up in our estimation of the probability to laze a 

satellite. The most notable error is the uncertainty that the satellite is traveling with 

constant speed and direction. Our time propagator assumes there are no forces acting on 

the satellite other than the pre-existing conditions and two-body gravitational effects. 

However, if the satellite undergoes station-keeping maneuvers, or is otherwise deflected 

from its course by some unforeseen event, the error can quickly become catastrophically 

worse over a surprisingly short period of time. Now the question must be asked as to 

whether or not we should choose to try to model these events and somehow account for 

them. This author would argue that the answer is no. To attempt to trap all possible 

errors, even those occurring beyond the 3o realm of possibility, would constrain the 

problem to such a degree as to make it unwieldy without adding much fidelity. We must 

assume that the satellite TLE files are only hours (at most) old. In this time, it is 

conceivable that a few station-keeping maneuvers have occurred on a few satellites. 

However, the chances that a given satellite has been maneuvered within a few hours and 

happens to cross the laser beam at the time it is fired are so infinitesimal as to preclude 

them from consideration.  Such a chance certainly does not justify adding an additional 
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two degrees or so to every LEO satellite position error angle! Therefore, the possibility 

of station-keeping maneuvers is best left out of the project. Some of this error could, 

however be accounted for by increasing the position error of the satellite, if desired. 

A second problem with the error analysis seen in the previous pages is that all 

position errors are modeled as a sphere. For the platform position error, this 

approximation may be accurate. However, for the forecasted missile and satellite 

positions, it is unlikely that this is the case. The missile's position, for example, is 

initially known to within a meter of our reference point, the platform. As time progresses 

within the forecast, the missile's position error will likely radiate from its known starting 

point as a elongated ellipsoid, rather than a sphere, as the acceleration is the most 

uncertain parameter, not necessarily direction. Furthermore, the satellite's position error 

is probably more accurately modeled as a highly eccentric ellipse, because its altitude is 

likely to be more established than its orbital progress. In future iterations of this project, 

it may be'beneficial to model these position errors using a covariance matrix, rather than 

an absolute error angle. 

3.5 Error Budget Consolidation 

Now that we have assessed the errors that exist within our error budget, we can 

begin to consolidate these errors into one error angle. You will notice that, of all the 

errors, Satellite Position Error seems to be the biggest in most cases. This is 

demonstrated in Table 3.1, which shows the magnitude of both the error angle as seen 

from the platform, and the position/displacement error as seen downrange at the 

satellite's distance from the platform, at both a LEO and GEO range.  Knowing each of 
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the error angles computed above allows computation of the overall error angle as seen by 

the platform. 

Table 3.1. Error Budget for Predictive Avoidance Using the High Energy 
Laser (HEL) with a Wavelength of 1.315 [im 

Error Vi Angle Error 
At LEO Alt 

Range = 500 km 

Vi Angle Error 
At GEO Alt 

Range = 36,000 km 

Displacement 
Error At LEO 
Range=500 km 

Displacement 
Error At GEO 

Range = 36,000 km 

Airplane 
Position Error 

= ±50m 
0.01424 deg 0.01424 deg ±124 m ± 8950 m 

Missile 
Position Error 

= ±50m 
0.01432 deg 0.01432 deg ±125m ± 9000 m 

Satellite 
Position Error 

= ±10000 m 
1.14576 deg 0.01592 deg ± 10,000 m ± 10,000 m 

Laser 
Divergence 

0.00014 deg 0.00014 deg ±lm ±88m 

Laser 
Intrinsic Spread 

Unknown, 
Assumed Small 

Unknown, 
Assumed Small 

Unknown, 
Assumed Small 

Unknown, 
Assumed Small 

Total Error = 
1.14588 deg 0.023072 deg ± 10,002 m ± 16,159 m 

yja2+b2 + c2 + d2 

The values in Table 3.1 were computed using a focal length,/, of 200 km (the range to 

the missile) and the HEL wavelength. Estimates for the BILL and TILL lasers will be 

very similar, as their wavelengths are fairly close to the HEL wavelength, and Laser 

Divergence is a minimal contribution to the overall error angle. Each of the error sources 

is independent of the others, so the Total Error is simply found by taking the square root 

of the sum of the squares of the individual errors. Thus, the overall error angle, a, can be 

computed by knowing the error angle contributed by the position errors of the satellite, 
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missile, and platform (Es, Em, and Ep respectively) as well as the Laser Divergence angle, 

ODIFF' 

a = JEs
2+Em

2+Ep
2+6DIFF

2 (3.18) 

Notice that the error angle is largely dependent upon the range to the satellite in question. 

LEO orbiting satellites introduce a much larger error angle than the GEO satellites, 

because of their proximity to the platform. Also notice that the error angle is largely 

dominated by the position errors, which in every case establish at least 99.99% of the 

Total Error. This brings up an interesting short cut. As mentioned previously, the Main 

Processor is extremely constrained by processing time, because it must run in real time. 

Therefore we must ask whether or not the additional 0.01% error contributed by Laser 

Divergence is worth the extra processing necessary to calculate it. Almost certainly, it is 

not. Therefore the processor should be able to ignore this error and save a small amount 

of processing time without sacrificing much fidelity: 

a = ^Es
2+Em

2+Ep
2 (3.19) 

In the future, as position tracking for the ABL system becomes more refined, Laser 

Divergence error may play a bigger role, and thus have to be included in the error angle 

calculation. Until that time, the radius of our "position error cone" can be described as an 

angle, a, which described in equation 3.19. 
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3.6 Finding the Current Separation Angle 

To recap, first the satellite position vector, p, was computed in the REN frame, 

followed by the unit position vector of the laser, L, also in the REN frame. In the last 

section, the error angle, a, was derived. Now, referring to Figure 3.6, everything is in 

place to find the angle, ß, that separates the laser from satellite. 

a = Error Angle 
ß = Separation Angle 
p = Sat position Vector 
L = Laser position vector 

Figure 3.6. Illustration of the Separation Angle 

Finding this angle is a fairly trivial matter: 

ß = cos" 'p.p 
(3.20) 

However, forecasting the change of this angle with time is somewhat more involved. 

3.7 Forecasting the Separation Angle 

Previously, it was stated that the requirement exists to forecast the separation of 

the laser with a given satellite up to 30 seconds into the future. In order to attempt such a 

task, it is first necessary to know the rate of change of ß, as well as its acceleration. 
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3.7.1 Finding the Rate of Change of the Separation Angle 

The rate of change of ß is simply its derivative. Recall from equation 3.20 that: 

pL 
ß = cos   (w)  where u = -^ (3.21) 

Therefore, taking the derivative: 

a —    ~^    du 
J^u2dt 

where: 

PL A u =  ,  ,        and 
du 

dt 
pj^    PJ±_PJ±_ P_P_ 

'"'       \P\~\P\2'   '  ' 

(3.22) 

|P| \P\ \P[ \P\ 

From equation 3.22, the rate of change of ß can now be computed, provided we can find 

the rate of change of the unit laser direction vector L, and the rate of change of the 

satellite position vector, p. Recall from equation 3.8 that the initial laser position is given 

by its azimuth and elevation: 

L = 

sin(£7) 

cos(El) sin(Az) 

cos(El) cos( Az) 

R 

E 

N 

Assume also that the rate of change and accelerations of the Azimuth and Elevation, 

Az, Az, El, and El are also given. This is to be expected, as they will undoubtedly be 

made available from the electrical current controlling the laser tracking mechanism. This 

being the case, the rate of change of L is easily found by taking the derivative: 

L = 

cos(El)El 

cos(El) cos(Az)Az - sin(El) sin(Az)El 

- cos(El) cos(Az) Az - sin(£7) cos(Az)El 

(3.22) 
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Now all that remains is to find the rate of change of p. Recall from equations 3.1 through 

3.4 that: 

= vrn, - R PECI ~ TECI ECI 

PREN ~ 

Ri   Rj   R k 

Ei    Ej   Ek 
N-i   N-j   N-k 

Py 

\PzJ 

Where i, j, and k are the X, Y and Z unit axis' of the ECI frame, rECi is the position of 

the satellite, REci is the position of the aircraft, and R, E, and N are the unit directions of 

the REN frame. It stands to reason that the rate of change of p can be found in a similar 

manner: 

dt 

d _ ^R PECI=-ZPECI-^ECI     dt"EC1 
(3.23) 

The reader may recall from Chapter 2 that the velocity of the platform has already been 

derived in the ECI coordinate frame in equation 2.33: 

rf * 

dt 
K- jm   — V KW   — 

cos0g    -sin0g 

sinö„     cosö„ 

0 0 

V irrjTF "r ECEF 

0 

0 
2^rrad 

86164.09054 sec 

xR ECEF 

Furthermore, the velocity of the satellite in the ECI frame can be extracted directly from 

SGP4. Therefore all of the components necessary to find the rate of change of p in the 

ECI frame are available. All that remains is to find this rate of change with respect to the 

REN frame.   This is done as is was previously, multiplying by the same conversion 
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matrix used to transfer the satellite position vector from the ECI frame into the REN 

frame: 

PREN  ~ 

R i   Rj   R k M E i    E j   E k p> 
N-i   N-j   N-k [fi<) 

(3.24) 

Armed with the rate of change of p and L, the rate of change of the separation angle 

quickly follows from equation 3.22. 

3.7.2 Finding the Acceleration of the Separation Angle 

The only obstacle that remains in the quest to find an approximate forecast of the 

separation angle, is to find the rate of change of the rate of change, or the acceleration of 

the separation angle ß. Recall from equation 3.22 that: 

ß = 
-1 

1- 
fp.O2 

(  _      - 2.       - _       - ^ 
p-L | p-L    p-L  p-p 

\P\       \P\      \p\2     \P\ 

Finding the acceleration, or the second derivative, of ß requires taking the method used in 

the previous section one step further, and finding the derivative of ß. It may be easier to 

visualize the derivation of the acceleration by breaking the rate of change into two 

smaller functions: 

ß =uv 

where: 

-1 
u =■ 

p-L 
1- 

and v = p-L+p-J:  P
L
 PP 

\P\    \P\
2 

> 

(3.25) 
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From this it can be seen that: 

ß = udv + vdu (3.26) 

where: 

-1 
u = 

[\p\ 

and        v = 

1- 

p-L | p-L    p-L   pp 

^  \P\        \P\       \P\2      \P\ 

du = - 1- 
( -   f\ 1 p-L * 

2\ 

P_k+JL±   PL PP 
I 12 

( -     f \ ' P-L ' 

v \P\   J 

and 

dv = 
p-L | p-L    p-L  pp 

I |2 

pL    p-L    p-L 

|P|       H       P 

^.^ 

( -   f\ 
P-L 

2 ^£)(p ^) 
I |4 

\P\ 

(  2. 

P L + p *111 
\ 

|_|2 

|P| J). 
f - 
pp l p-p   pp 

lpl     lpl    Ipf 

f* *Y\ PP 

This somewhat longer equation for the acceleration of ß brings with it two more 

terms that require further derivation. Just as finding ß required finding Land/5, so also 

the derivation of /jintroduces the variables  Land p.  Again, the derivation of the 

acceleration of L follows from the derivation of the rate of change of L. Recall that: 

L = 

cos(£7)£7 

cos(L7) cos( Az)Az - sin(LZ) sin(Az)L7 

- cos(El) cos( Az) Az - sin(L7) cos(Az)El 
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Therefore it follows that the acceleration of L will simply be the derivative with respect 

to time of the rate of change: 

dt 

cos(El)El - s'm(El)El ■ El 

cos(£7) cos(Az)A'z - Azipos(El) sin(Az)Az + sin(£7) cos(Az)£7j- 

sin(EZ)sm(Az)El - £/(sin(£/)cos(Az)Az + cos(El)sin(Az)El) 

cos(£/)sin(Az)Az + Az(cos(£,/)cos(Az)Az-sin(£'/)sin(Az)£,/j- 

sin(£7) cos(Az)£7 - Ei\cos(El) cos(Az)El - sin(El) sin(Az)Az) 

R 

E 

N 

(3.27) 

As stated previously, we have assumed that the acceleration of both the Az and the El are 

given. The only value left to derive is p. Realizing that this can be found in the ECI 

frame and then converted to the REN frame in a similar manner as the rate of change 

derivation allows computation of the acceleration in the ECI frame: 

d2 _ 
'ECI  *    ,2 ^ECl PECI ~ "'-       "ft 

deT'a dt ECI (3.28) 

Finding the acceleration, r , of the satellite at any given position is fairly straightforward 

in the ECI frame: 

d   f = -Ver 

dt' 
(3.29) 

The gravitational constant for the Earth, ßB, is roughly 398601 km /sec . Recall that the 

platform velocity in the ECI frame is: 

^R      - 
dt    Ea ~ 

cosdg    -sinOg    0 

sin0g     cos6g     0 

0 0        1 
'    ,   **-ECEF + M® X **-ECEF (3.30) 
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Where CO represents the angular rotation of the Earth as shown in equation 2.23. Because 

the platform is flying a fixed course, intentional acceleration due to course change should 

zero, or very close to zero. Thus we are left with only the Coriolis and Centripetal 

accelerations in the acceleration derivative: 

d2 ^ 

dt 
2R£C/ =2fi>x 

cos0g    -sin^    0 

sin0?     cos0g     0 

0 0        1 
dt 

ECEF + coBx(co9xRECEF)      (3.31) 

Both the first term in equation 3.31, the Coriolis acceleration, and the second term, the 

Centripital acceleration, should be fairly small compared with the acceleration of the 

satellite, because the platform will not be "moving" nearly as fast as the satellite with 

respect to the ECI frame. Nonetheless, it has been decided to include the platform 

acceleration in the calculation of p, even if only for theoretical completeness, as its 

inclusion does not significantly degrade software performance. After finding the 

acceleration of p in the ECI frame, it can also be translated to the REN frame using the 

matrix employed in previous translations: 

PREN ~ 

R i R j   R k M E i E j   E k Py 

N-i N-j   N-k bJ 
(3.32) 

We now have all of the components necessary to build an initial forecast using the 

equations for ß, p\and $, for the separation angle between the laser and the satellite at 

some given time in the future. 
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3.7.3 The Forecast Method 

Now that ß,/3,and/j, have been found from initial conditions, there are a 

number of ways to approximate ß at a future time. The goal is to find the time (or times) 

that the laser will pass closer than the error angle to the exact predicted position of the 

satellite. Referring to Figure 3.6, the goal is to find any time in which the error angle, a, 

is greater than or equal to the predicted value of ß. Recognizing this, it can be seen that 

the forecast for ß fits into a second-order Taylor series expansion: 

ß(t) = a = ß0 + ßAt + ±ßAt2 (3.33) 

and solving for t will gives us the times, if any, when intersects this region. This is 

illustrated in Figure 3.7. In actuality, the motion of the satellite with respect to the plane 

might better be described by a sine wave that varies in amplitude and frequency 

a 

Figure 3.7. Illustration of a Satellite "Intersection". 
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somewhere between zero and n radians as the days and weeks go by. However, for the 

short amount of time with which this project is concerned, we are only interested in the 

local minimums of this sine wave. These are the points of closest approach, and they can 

be approximated by using a second order parabolic function as described in equation 

3.33. Later, the accuracy of this approximation will be addressed, but for now, it will be 

assumed that this approximation is accurate. To find the times at which this intersection 

will occur, the error angle can be brought inside the quadratic: 

ß(t)=0 = (ßo-a)+ßAt + -ßAt2 (3.34) 

And the quadratic equation can then be used to solve for At: 

-ß±Jß2-2ß(ß -a) 
At = -f—^-—..   PKPo '- (3.35) 

There will always be two solutions for At. However, in many cases, these solutions will 

be imaginary, because the terms inside the square root are negative. This would indicate 

that the separation angle never exactly equals the error angle, and thus never crosses it. 

A second case might consist of two negative values for At, which would imply that the 

laser position vector has already passed through the satellite error cone, and is now 

headed away. The third case is that there is one positive root and one negative, which 

implies that the laser position vector is currently in the laser cone. This will be the case 

when ß<a, and can be recognized before the quadratic roots are ever found. The fourth 

case, in which At has two positive values, is the case in which an intersection is forecast 

to occur. These four cases are summarized in Table 3.2. 
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Table 3.2. The Meanings of the Quadratic Roots for At 

Quadratic Roots Cause Intersection? 

Two Imaginary Roots Laser never close enough to 
intersect the satellite 

No 

Two Positive Roots Laser pos vector is moving 
away from satellite 

No 

One Positive, One Negative Laser pos vector is currently 
intersecting the satellite 

Yes 

Two Negative Roots Laser pos vector is moving 
towards satellite 

Possibly 

The first three cases are fairly straightforward. Either an intersection will occur or 

it will not. The fourth case however, demands a bit more attention. As an input to the 

algorithm, the Time of Laze, TL, describing the expected duration of the laze is an 

important part of determining whether an intersection will occur. If the intersection is 

forecast to occur outside of the lazing window: 

TL<AT, (3.36) 

where represents the closest time to intersect, then, in fact, an intersection is not forecast 

to occur. If this is not the case, then a forecasted intersection has occurred. 

3.7.4 Accuracy of the Forecast Method 

As mentioned previously, the method used to forecast the separation angle does 

not model the separation of the laser and satellite position vectors accurately in all 

situations. An example of an inaccuracy in the Forecast Method is illustrated in Figure 

3.8. This figure shows the actual separation angles encountered in "close approach" of a 

satellite with the laser position vector. The "true angle" was compiled by actually 

interpolating the platform, laser, and satellite forward slowly in time, and plotting the 
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Separation angle, ß at each point in time. The reason this is established as the "actual 

separation angle" is that the positions of each of the players is fairly well known at a 

given time, and therefore ß is equally definite. The unknown is how well our function, 
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Separation Angle Forecast During a Close 
Approach 

Mi^^^^^^^^Mtt^MHiipi^ttp^n^^^^H^A^^iHp^iy^H^^^M 

 Actual Angle 

- - - Forecast Angle 

-   -ErrorAngle 

O-      v     <b-      V-     <b-     A-     o>-    NO-    jy    $>■    &■    N«b-    N<&-    $>■ 

Seconds From Forecast 

Figure 3.8. Comparing the Actual Separation Angle Encountered in 
a Close Approach With the Forecasted Separation Angle 
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that uses ß and ß to anticipate its behavior, maps to the known behavior of ß. In the case 

of Figure 3.8, the error angle was small, only about 0.075 degrees. Notice that at the time 

t=0 seconds into the forecast, the forecast angle and the actual separation angle 

correspond almost perfectly. In fact the forecast angle matches the actual angle almost 

exactly, until 5 seconds before the closest approach, at which time it diverges ever more 

rapidly. Unfortunately, this is the period of time with which we are most concerned! The 

reasons for this divergence are interrelated. First, we are not using an approximation 

function that does not match exactly with the behavior of the actual angle. Second, 

during the time of closest approach, the initial conditions no longer predict the separation 

angle well. At this closest approach, the acceleration of the separation angle increases 

dramatically, due in large part to the proximity of the two vectors as they pass each other. 

This dramatic acceleration is seen in the rounded vertex of the actual separation angle. 

However, with the forecast, the acceleration remains minimal, pushing the forecast to 

actually intersect with the satellite at zero degrees of separation. This is, of course, a 

virtual statistical impossibility, and should raise considerable suspicion as to the veracity 

of the forecast. In fact it is to be expected that the forecast angle will deviate from the 

actual separation angle in every forecast, as the initial conditions will eventually no 

longer match actual conditions to the precision we require. For example, consider the 20- 

second forecast shown in Figure 3.9. This forecast deals with a satellite position vector 

that never gets closer than 40 degrees from the laser position vector. In this plot, it can be 

seen that the forecast occurred at a time when the two vectors where actually separating 

from each other. Despite their distance from each other, still the forecast deviates over 

time, as expected. So what does it profit to use this forecasting method? 
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The benefit of using this method to pinpoint intersections is that, in almost every case, the 

forecast will be conservative in its estimation of an intersection, and will locate the 

closest approach time to within 2 seconds of the actual closest approach time. 

Separation Angle Forecast for Far Approach 
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Figure 3.9. Illustration of Forecasted Angle Deviation From Actual 
Angle in a "Far Away" Satellite 
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Furthermore, the forecast will eliminate all but the most closely approaching satellite 

vectors. Of course the extent to which other satellites are eliminated by the forecast 

depends heavily upon the initial conditions. For example, having a laser turret slew rate 

of 10 degrees per second is likely to produce quite a few more "close-approach" 

satellites, like the one illustrated in Figure 3.8, than would a normal operational turret 

slew rate of, say, 1.5 degrees per second or less. Given the operational conditions, and 

the turret slew rates necessary to track a missile moving a roughly 3 kilometers a second 

at 100 kilometer range, it would be reasonable to expect that the turret would normally 

track at a rate of one to two degrees per second. At this rate, it is also reasonable to 

expect that the forecast method will eliminate at least 90% of the satellites in the list fed 

to it. This leaves us with, at most, 10% of the satellites given to the Main Processor that 

must be evaluated more closely. 

3.8 Interpolation to Correct the Forecast 

Now we have employed two filters to narrow the list of at-risk satellites. The 

first, the ABLPA Preprocessor, can be expected to eliminate roughly 75 of every 100 

satellites in an operational environment, depending, to some degree, upon the location of 

the theater employment. If we start with the assumption that there are 1000 active 

satellites, this now leaves 250 to evaluate. The second filter, the Forecast Filter, can be 

expected to strain 90% of the remaining 250 and leave us with, at most, 25 at-risk 

satellites. With so few satellites remaining, it now becomes feasible to use straight 

interpolation of the separation angle for these few satellites over a given period of time. 

Fortunately, the Forecast Filter also gives a good approximation for the time at which the 

vertex, or the closest approach point of the satellite position vector to the laser position 
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vector, occurs. Knowing this, an interpolation can be set up using an Interpolation Time 

Buffer and Interpolation Step Size as the parameters controlling the interpolation. 

3.8.1 The Interpolation Time Buffer 

Starting with the vertex, a time increment can be specified as a certain interval 

before the forecasted vertex at which to begin interpolation. The vertex arrived at during 

the forecast does not necessarily occur at the time of closest approach. For example, 

Figure 3.10 illustrates the situation that will occur in almost all cases. 

Forecasted 
Closest 
Approach 
Time 

Interpolation Start: 
= 2 Seconds Prior to 
Forecasted Vertex 

15    At sec 

Figure 3.10. Typical Early Vertex Forecast with a Two Second 
Interpolation Buffer 

In the typical forecast, when the satellite and laser approach each other within a few 

degrees, the actual separation angle will look fairly linear until a few seconds before the 
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dosest approach, much like a triangle with a rounded bottom corner. This is seen clearly 

in the example given in Figure 3.8. With this type of function curve, typically the 

forecast vertex will occur slightly before the actual vertex in time. This is seen in Figure 

3.10. So why not simply begin interpolation at the forecast vertex and move forward 

until the actual vertex is encountered? There are cases where the forecast vertex falls 

after the actual vertex in time. The first case can occur if our forecast is done near the 

vertex, before crossing the error angle. This is illustrated in Figure 3.11. Here, the 

Actual \                     / Forecasted 
Closest \                / Closest 
Approach 

\         / Approach 
Time 'A / Time 

Interpolation Start: 
= 2 Seconds Prior to 
Forecasted Vertex 

At sec 

Figure 3.11. Special Case Forecast Where Forecast Vertex Falls After 
Actual Vertex in Time 

forecast occurs at a critical time near the vertex, but before the separation angle is below 

the error angle, so an initial check will not show the intersection, and the forecast will lie 
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beyond the actual vertex. It is for cases like this that a time buffer should be inserted 

between the forecast vertex and the interpolation start time, to ensure that the 

interpolation covers a big enough time block to include the actual vertex. Another case 

that may allow the forecast vertex to occur before the actual one, is the case when the 

error angle is much bigger. The example in Figure 3.10 is using an error angle that, 

although it is not labeled, would be only about 0.1 degrees. According to earlier analysis, 

however, it is anticipated that error angles of up to 1.15 degrees may be anticipated for 

LEO satellites. This will raise the possibility of a separation function that intersects the 

error angle at a higher degree. Such an event would cause the forecast to drift to the right 

of the actual intersection. A third case could occur where both case 1 and 2 happen, 

pushing the forecast even further ahead in time, although this is only a very remote 

possibility. The best time buffer to use is best left to the analyst who is using the 

algorithm. However, in this project, the time buffer was kept at two seconds. This buffer 

size allowed the algorithm to handle every variation and case that was run, without 

exception. This is not to say, however, that a case does not exist in which two seconds is 

insufficient. For this reason, the time interpolation buffer length is an input to the 

software, as opposed to a constant. 

3.8.2 Interpolation Step Size 

Another time increment, the interpolation step size, must also be specified. The step size 

refers to the amount of time that transpires between samplings of the separation angle. It 

is the step size that determines the precision of the interpolation. If the step size is too 

big, then the true vertex may never be reached with enough precision to determine 

whether or not it crosses the error angle boundary. This is the case in Figure 3.12. In this 
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figure, the step size is one second. It can be seen that, although the separation angle 

crosses the error angle, The interpolated parabola never crosses the critical angle, and 

thus the intersection is never registered. 

t0      12     3     4     5     6     7      At sec 

Figure 3.12. Interpolation With a Step Size that is Too Large 

The obvious cure for this problem is to shorten the step size. However, this must be done 

with care. Each step represents a complete analysis of the extent of Earth's rotation, 

platform movement, laser turret tracking and a call to SGP4 (or another ephemeris 

propagator) to find the separation angle. If the step size is reduced from one second to 

0.0001 seconds, then we have increased the number of analyses by a factor of ten 
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thousand (per satellite)! Our dilemma then, is to find the step size with enough precision 

to satisfy requirements. Figure 3.13 presents the same parabola as in Figure 3.12, but 

with exactly one-half the step size. Fortunately, the precision increases significantly as 

the step size decreases. 

t      12     3     4     5     6    7      At sec 

Figure 3.13. Decreasing Step Size Increases Precision 

This project was tested with a step size of 0.1 seconds. This increment caught every 

satellite correctly for every operational scenario tested. Again, this is not to say that 01 

seconds is necessarily the optimum increment, only that it worked flawlessly during 

testing. 
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3.9 Main Processor Methodology Conclusion 

With this summary the theory and methodology used in this Predictive Avoidance 

project is concluded. While the previous pages focus on the algorithm that was 

developed for this project, Chapter IV - Software Development will attempt to describe 

the actual application of this algorithm in a software development project. Analysis of 

the algorithms presented in these last two chapters shall be fully addressed in Chapter V - 

Analysis and Conclusions. 
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IV. Software Development 

The software by which the algorithms discussed previously can be used 

practically is discussed briefly in this chapter. For a more comprehensive discussion of 

the software implementation, the reader may wish to refer to Appendices A-F. The 

Predictive Avoidance software has been written with the intent that it may be used within 

the fire control system of the Anti-Ballistic missile Laser (ABL) currently being 

developed by the Boeing Corporation. The software has been written in a modular 

format, and has been broken into logically functional modules that have been designed to 

work both together and independently, if needed. As mentioned in the Introduction, this 

software package has been designed with three conflicting (but important) objectives. 

The first objective is to make the software readily understandable to a person who wishes 

to study it in the future. The package is designed with an agreement by Boeing that it 

will be studied and at least partially incorporated directly into the BC/FC of the ABL 

platform. Therefore, to ensure a smooth incorporation into the ABL project, the most 

important consideration is that an engineer can survey the code and easily understand its 

content and purpose. The second goal is that the software be fast. It is estimated that the 

prediction avoidance software should not need more than 0.5 seconds to fully process a 

mission. Therefore algorithms should be designed to minimize processing time. The 

third major goal for the PA software is that it should be modular. Of these three goals for 

the software, understandability is the by far the most important. There are many cases 

within the software in which a fluid, slow, understandable implementation has been used 

instead of a speedier vague implementation. This is done with the understanding that the 
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software will be reviewed at a later time, when any "slow" algorithms may be supplanted 

with the software engineer's choice of implementations. The standard flow of the 

software is shown in Figure 4.1. 

TLE Input File Fran 
Space Command 

(All Active Satellites) 

Situation Inputs 
Time, Platform 
Position, etc. 

A TLE File containing 
the satellites that have 
been determined will 
intersect the laser in a 
given time. 

ABLPA 
Preprocessor 

A TLE File containing 
only those satellites that 
are in view of the 
platform during a given 
time period. 

Preprocessor 
Output 

Intersect File 

ABLPA 
Main Processor 

Close Approach 
File 

A TLE File containing 
the satellites that are 
close enough to 
interpolate. 

Figure 4.1. The Predictive Avoidance Software Flow 

4.1 Modularity and Testing 

As mentioned previously, modularity is a goal for this software package. 

Although the software package has been broken into two separate entities, namely the 

Preprocessor and the Main Processor, the modules that compose this project have been 

grouped together into twelve smaller libraries, by their logical functionality. The reason 

for this breakdown is simple.   The project as a whole is difficult to test as a whole. 
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Breaking down the project into twelve testable mini-projects allows independent testing 

of a portion of the software while divorcing it from the whole. The benefits to this are 

intuitively obvious. Understandability and testability are increased, however, creation of 

this type of infrastructure in the project has also required that the code be that much 

larger, with more physical modules and interfaces. Each library is distinguished by 

having its own stand-alone GUI that calls the module(s) being used in that library. As 

implied before, there will be twelve software libraries total. Two of these will be the 

final ABLPA Preprocessor and Main Processor. The other ten will be composed of lower 

and lower levels of subordinate modules; five testing modules in the Preprocessor, and 

five more introduced in the Main Processor. The overall structure of the software is 

addressed with more depth in Appendix A - Software Structure. 

4.2 The Calculation Modules 

The modules that house the meat of the algorithm and the calculation intensive 

software are written in the C++ language. The compiler used is Borland C++ Builder 3 

(Standard, C++ Version 5). It is likely that the code for these modules can be recompiled 

with minimal effort using another similar C++ compiler. These modules are written for 

easy adaptability to other environments. All of the code for the calculation modules will 

be included and discussed, as its explanation and operation is one of the important 

products that this thesis delivers. Appendix B - The ABLPA Preprocessor Software will 

discuss all modules developed for the ABLPA Preprocessor. Appendix C - The ABLPA 

Main Processor Software will discuss modules developed for the Main Processor that 

have not already been covered in Appendix B. 
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4.3 The Test Modules for Each Software Library 

There are other modules that have been developed exclusively for the task of 

calling and interfacing with the Preprocessor the Main Processor, and each of the other 

ten libraries. They are strictly "front-end" interfaces for the calculation modules that can 

be used to run and test the algorithms that have been developed within the calculation 

modules. These test modules have been kept as "simple" as possible, while still 

maintaining ease-of-use, to avoid the necessity of "testing" the test modules. They 

consist of a graphical interface that collects input to the module(s) being tested, and the 

function call to those modules. The graphical nature of the test modules utilizes quite a 

bit of compiler-specific organization and terminology to allow easy development of these 

modules. Therefore, any change or recompilation of these graphical interface modules 

will require the user to have a copy of Borland C++ Builder 3 (Standard). This compiler 

will also be required if the user of this software wishes to run the fully compiled software 

packages that have included within them the GUI interfaces. The Test Modules and their 

software code is described further in Appendix E. 

4.4 The Environment 

These modules have all been developed using a standard desktop IBM compatible 

computer, using a 200 MHz Intel Pentium processor. The modules are compiled to run in 

the Microsoft Windows 95 or 98 operating system environment. Operation in other 

environments has not been tested and is not guaranteed, especially the graphical test 

modules. 
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4.5 Sample Interfaces 

As mentioned previously, the product, C++ Builder 3, made by Borland was used 

to craft a graphical front-end to each application designed. One GUI has been created for 

each functional task (or library) needed in the Preprocessor and Main Processor. Each of 

these modules, where practical, comes with a graphical front-end interface to allow 

testing of individual components. Both the Preprocessor and the Main Processor have 
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Figure 4.2. GUI Interface to the Preprocessor 

similar interfaces. The Preprocessor interface is shown in Figure 4.2. the inputs and 

outputs can be clearly seen and modified using this interface. It should be noted that 

these interfaces, although easy to use, will almost certainly not be included in the final 

software package to be used on board the ABL platform. They take up far too much 
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Figure 4.3. GUI Interface to the Main Processor 

overhead processing to be practical, and it is likely that the PA software will be executed 

automatically, at laze time, not using a man/machine graphical interface. Rather, the 

main purpose of these interfaces is to allow an easier testing environment in which 

parameters can be changed quickly and output can be seen in a formatted framework. 

The interface to the Main processor is similar to that of the Preprocessor, and can be seen 

in Figure 4.3. Again, Appendices A-F will provide a more complete description of the 

modules, interfaces, inputs and outputs for the software package discussed briefly here. 

An analysis of the software will follow in Chapter V. 
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V. Analysis and Conclusions 

Now that the methodology of the Predictive Avoidance algorithm has been 

developed and discussed, and software has been created to automate this algorithm, we 

must now evaluate whether or not all of the goals of this study have been achieved. The 

reader will recall that the two main goals of this study were to develop a predictive 

avoidance algorithm, and to develop a software system that can automate this algorithm 

using less than 0.5 seconds during the pre-laze fire sequence. The analysis of the 

software in the following sections addresses how well the algorithm and software meets 

these goals. Areas where there may be room for improvement will also be discussed. 

Due to time constraints, the optimal solution to some problems encountered in this 

project may have been bypassed by using more convenient methods. Although it is 

hoped that there are not many such areas, some were a necessity to ensure this product 

was delivered on time. Recognizing that this thesis is only the first draft of an iterative 

process conducted by Boeing, it is hoped that these "lacking" areas will be further studied 

and refined in future iterations. 

5.1 Software Analysis and Performance 

Numerous tests were conducted upon each software library module individually, 

and upon the integrated Preprocessor and Main Processor. For brevity, the individual 

module testing will not be discussed except to say that individual test cases were 

compiled to analyze each module, including extensive boundary and critical value 

testing. Each module was required to pass all test cases before being integrated. It must 

be stressed here that SGP4 was heavily relied upon, but not tested.   This is the only 
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module that was not tested, because of its complexity, historical verification, and 

difficulty of independent verification and validation. 

5.1.1 Integration Testing 

After each module was independently tested and verified, the integrated 

Preprocessor and Main Processor were tested using interface and boundary tests that 

ensured the outputs received during individual module testing were being integrated into 

the proper format, without corrupting data across the interfaces. Final integration testing 

included roughly 2,000 - 2,500 individual executions of both the Preprocessor and the 

Main Processor. Only approximately 100 of these runs were used to verify (via 

independent calculations) the correctness of the output. These 100 runs incorporated 

changes in the location of the platform, speed, turret rates, and times of laze. It is not 

beneficial to list every test here, as the software needs to be verified by an independent 

third party regardless. However, the performance of the software in general, and 

performance under some tests will be briefly discussed. 

5.1.2 Preprocessor Software Filtering Performance 

A sample TLE satellite input file was used containing 772 unclassified satellite 

listings. The Preprocessor found, on average, that 22% of these input satellites were in 

view. By changing the location of the platform and the Universal Time of execution, 

testing concluded that the maximum number of satellites ever deemed in view of the 

platform was 209 (or 27.1%) at the location 5° Latitude, 100° Longitude, on August 14, 

1998, 03:58 AM GMT. Of course, not every time and location were tested, and so this 

maximum percentage might rise slightly, but not much. The fewest number of satellites 
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seen in view is 78 (or 10.1%) at the South Pole during the same time slot. Of course, the 

polar caps are not of great interest, as it is unlikely that the ABL will ever see the poles, 

and a polar location precludes the possibility of encountering any satellites within the 

Geostationary Belt. 

5.1.3 Preprocessor Software Timing Performance 

Given the input file of 772 satellites, the Preprocessor executed, on average, in 1.2 

seconds Wall Clock Time (WCT). This test was conducted on a standard 200 MHz IBM 

compatible desktop computer, running under the Microsoft Windows 98 OS. The WCT 

differed between 0.9 and 1.8 seconds, depending upon the CPU load exerted by other 

applications at the time of the test. WCT will depend heavily upon the system used to 

run the Preprocessor. Although the Preprocessor is not required to run within a given 

time budget, it is good to know that it is fairly quick and can be run multiple times in a 

minute, if needed. The graphical interface and the input/output files constitute a large 

part of this WCT. It is clear that WCT will be substantially reduced when the GUI is 

stripped off, and the I/O is handled in memory rather than through disk read/writes. 

5.1.4 Main Processor Software Filtering Performance 

For a given sample test, where the platform was located at 0° Latitude, 0° 

Longitude, the sample TLE satellite input file was used, containing 772 unclassified 

satellite listings. This is the file that the Main Processor would encounter if no 

Preprocessing was accomplished ahead of time. The Main Preprocessor found that 17 (or 

2.2%) of these input satellites were close enough to interpolate (17 satellites were 

interpolated).   By changing the location of the platform and the Universal Time of 
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execution, testing concluded that the maximum number of satellites ever close enough to 

be interpolated was 18 (Or 2.3% of the active satellite file), so this sample test is 

approaching the maximum number of close-approach satellites that have been seen in any 

test. Again, not every time and location were tested, and so this maximum number may 

be exceeded somewhere, but not by much. When preprocessing is performed, the input 

file to the Main Processor drops to 198 satellites (the satellites that are in view), which is 

still a somewhat high concentration. When the Main Processor analyzed this new input 

file, it found 16 (rather than the expected 17) close-approach satellites. It is expected that 

the number of close-approach satellites should not change, because preprocessing only 

strips away satellites that could not possibly intersect the laser. The reason for this 

discrepancy is that one of the 17 satellites that was forecast to intersect the laser was on 

the other side of the Earth, but during the exact moment of the forecast was accelerating 

at a very fast rate toward the laser. When this fast acceleration (which in reality lasts 

only fractions of a second) is propagated 30 seconds into the future, it results in an 

unrealistic forecast that is quickly weeded out using interpolation. At no time during 

random testing was an actual intersection recorded. Rather the intersection tests had to 

be engineered and manipulated by the tester, because of the extremely low probabilities 

of an actual intersection. There were no test cases developed, engineered or random, that 

could produce more than one intersected satellite. 

5.1.5 Main Processor Software Timing Performance 

Given the unprocessed input file of 772 satellites, the Main Processor executed, 

on average, in 0.9 seconds WCT. This test was conducted on the same computer as the 

Preprocessor.   When given the preprocessed file of 198 in-view satellites, the Main 
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Processor execution time dropped down to 0.25 seconds WCT. Again, WCT will be 

substantially reduced when the GUI is stripped off, and the faster memory I/O is used. 

The reader will recall that the requirement for execution is 0.5 seconds, so there is plenty 

of room for additions/modifications to the software. 

5.2 Further Study 

There are a number of areas that may require further study, and have not been 

thoroughly considered in this thesis. It is hoped that these topics will be addressed during 

future iterations in the development of the final software package to be used with the 

ABL platform. These topics are only briefly addressed here. 

5.2.1 Missile Tracking 

Currently, the software treats the missile trajectory as a static entity, with initial 

parameters that do not change. This is reflected in the laser turret position, velocity and 

acceleration variables which are read at forecast time, and held constant throughout the 

forecast duration, as long as thirty seconds. It is unreasonable to believe that these 

parameters cannot vary while the missile is in the boost phase. Different ballistic missile 

systems have burn rates that vary significantly throughout the duration of the burn. 

While the initial acceleration may not change, there is also a good probability that it will 

change. A significant change from initial conditions will, of course, invalidate a forecast 

that is based on those initial conditions. There are at least two feasible methods to 

counter this variance from initial conditions. The first method is to store another data file 

that accurately describes the burn rates of all possible missile targets, and use this 

information to more accurately predict missile trajectory. The second suggested method 
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is to simply rerun the Main Processor when and if the actual conditions change from the 

initial conditions by some slight error angle, and then include that slight error angle in the 

forecast error angle already computed for the scenario. Using this method, the Main 

Processor would re-execute during the laze only if the initial conditions are seriously 

compromised by the actual missile trajectory. Although there is an extremely remote 

possibility that this recomputation could result in laze interruption, this is unlikely, given 

the fact that 2000 random runs of the Main Processor have not produced a single 

intersection yet. Even if an intersection was predicted, the decision to terminate the laze 

still rests in comparing the importance of the target to the importance of the compromised 

satellite. This second solution's strength is that it is easily implemented and tested. 

5.2.2 Atmospheric Refraction 

As laser energy travels through the atmosphere, it encounters differing 

atmospheric densities until it reaches the relatively empty vacuum of space. As light 

encounters these differing densities, the index of refraction of the medium (air) changes, 

causing the leading edge of the beam to travel at a slightly different speed than the 

trailing edge. Over a large distance, this can cause the beam to arc (or refract) slightly 

until it reaches space. Quick calculations show that this arc may cause as much as a 0.4 

degree change within the atmosphere for small slant angles traveling a long distance 

before hitting the vacuum of space. This degree change would then be further added to 

as the beam propagates at its new trajectory through space. This refractive issue is a 

challenge that was encountered too late to incorporate into this iteration, but it is still 

extremely important. The solution is, of course, to account for this refraction given the 

location of the platform and the starting parameters of the laser turret.   Although the 
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refractive index of air varies from location to location, for our purposes, it can be held 

constant over given altitudes with only minor errors in the refraction calculation. 

5.2.3 Error Angle Determination 

Currently, the error angle for a given satellite encounter is computed using rough 

position error approximations. This results in an error angle that is an absolute. That is, 

we can either hit it or miss it. Further the error angle describes a spherical comfort zone 

around the satellite when in fact, the error ellipsoid should probably be more oblong and 

eccentric given the types of errors encountered. One possible solution to further define 

the error ellipsoid is to use covariance matrices to model each of the position error 

ellipsoids, resulting in a more probabilistic definition of the comfort zone around the 

satellite that we wish to avoid. The difficulties with this solution lie in the population of 

each covariance matrix, and the definition of exactly what probability is "too high" a risk 

when describing the approach of the laser to the satellite. Because this solution would 

have added a significant time cost with marginal fidelity improvement, it was decided to 

forego this method in favor of the simpler half-error angle approach. 

5.2.4 Forecast/Interpolation Fine Tuning 

Currently the Main Processor does a rough forecast that interprets more satellites 

being intersected that are actually intersected, and then interpolates the position of each 

"intersecting" satellite to ensure that it actually does intersect. During testing of the Main 

Processor, no satellites that approached close enough to the laser to possibly be 

threatened were ever "not caught" by the initial forecast. This is not to say that it could 

not happen however.   Independent calculations have shown that, theoretically, a small 
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possibility exists that a LEO range satellite with a large error angle could possibly slip by 

if the satellites comfort zone (error angle) is just barely touched by the laser turret angle 

in the first 0.3 seconds after the forecast is conceived. In this case, there is a small 

possibility that the initial conditions would be derived near the vertex, and that the 

forecast closest approach angle is predicted to occur long after it actually has occurred. 

This is a problem because there is a set "Interpolation Buffer Time" before the forecast 

closest approach starts when the interpolation begins. If the time between the forecast 

closest approach and the actual closest approach is greater than this buffer time, then 

interpolation will not catch an intersection that occurs at the actual closest approach time. 

This has not occurred in any test cases, and attempts to engineer such a case failed 

repeatedly due to the time and precision needed to model such an approach. This is not 

to say, however, that it is impossible. A possible solution might be to increase the buffer, 

which only slightly affects the overall run-time (depending upon the step size). Further, 

attempts should be made to refine the interpolation step size. During testing, it became 

evident that 0.1 seconds was adequate for the precision needed, without compromising 

too much efficiency. This is not to say, however, that 0.1 seconds is the optimum size, 

nor that it will catch every possible intersection. 

5.2.5 Software Speed and Testing 

As mentioned previously, this software was not necessarily written to have the 

fastest possible execution time. Rather, the primary goal was to write the software so that 

it is easily understandable. This often involved coding an algorithm using an inefficient 

implementation so that it matched (both functionally and visually) the methodology as it 

is presented in this thesis, rather than using an elegant but fuzzy solution.  Because this 
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code was designed and implemented with the understanding that it would be just the first 

step of an iterative solution, understandability was considered the highest priority to 

ensure a successful handoff. Testing is likewise considered to be iterative. Although 

considerable in-house testing was completed by the author, it was a one-man effort. One 

man does not make a very dynamic testing team, especially when that one man is the 

designer, coder, and verification/validation checker! That man, though disciplined, is 

bound to have his own biases and iterative mistakes that cannot be cross-checked with 

anyone else. Therefore the value of the testing conducted by him is diminished, and 

mistakes are likely to still exist. 

5.3 Conclusion 

There has been much ground covered here, and it is hoped that the Predictive 

Avoidance algorithm and its corresponding software will prove to be useful in future 

modeling efforts. Although this thesis applies to a narrow application platform, namely 

the ABL, it can be seen that the general algorithm is broadly applicable to a wide range of 

directed-energy targeting applications. For instance, setting the platform speed and 

altitude to zero will result in a land-based model for predictive avoidance. It is likely that 

directed-energy weapons will become more widespread if the technology can be 

adequately exploited with the first operational ABL series. If so, the general principles 

tied together in this thesis will find broader application. 
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Appendix A - The Software Structure 

The software implementation by which the algorithms discussed previously can 

be automated is discussed in this appendix. This appendix, combined with the following 

appendices, comprise a rough software programmer's manual. The software has been 

written in a modular format, and has been broken into logically functional modules that 

have been designed to work both together and independently, if needed. As mentioned in 

Chapter IV, this software package has been designed with three conflicting objectives. 

The first objective is to make the software readily understandable to a person who wishes 

to study it in the future. The second goal is that the software be fast. It is estimated that 

the prediction avoidance software should not need more than 0.5 seconds to fully process 

a mission. The third major goal for the PA software is that it should be modular. Of these 

three goals for the software, understandability is the by far the most important. There are 

many cases within the software in which a fluid, slow, understandable implementation 

has been used instead of a speedier vague implementation. This is done with the 

understanding that the software will be reviewed at a later time, when any "slow" 

algorithms may be supplanted with the software engineer's choice of implementations. 

The standard flow of the software is shown in Figure A. 1. 

A.l Modularity and Testing 

As mentioned previously, modularity is a goal for this  software package. 

Although the software package has been broken into two separate entities, namely the 

Preprocessor and the Main Processor, the modules that compose this project have been 

grouped together into twelve smaller libraries, by their logical functionality. The reason 
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Figure A. 1. The Predictive Avoidance Software Flow 

for this breakdown is simple. The project as a whole is difficult to test as a whole. 

Breaking down the project into twelve testable mini-projects allows independent testing 

of a portion of the software while divorcing it from the whole. The benefits to this are 

intuitively obvious. Understandability and testability are increased, however, creation of 

this type of infrastructure in the project has also required that the code be that much 

larger, with more physical modules and interfaces. Each library is distinguished by 

having its own stand-alone GUI that calls the module(s) being used in that library. As 

implied before, there will be twelve software libraries total. Two of these will be the 

final ABLPA Preprocessor and Main Processor. The other ten will be composed of lower 

and lower levels of subordinate modules; five testing modules in the Preprocessor, and 

five more introduced in the Main Processor. 
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A.2 The Calculation Modules 

The modules that house the meat of the algorithm and the calculation intensive 

software are written in the C++ language. The compiler used is Borland C++ Builder 3 

(Standard, C++ Version 5). It is likely that the code for these modules can be recompiled 

with minimal effort using another similar C++ compiler. These modules are written for 

easy adaptability to other environments. All of the code for the calculation modules will 

be included and discussed, as its explanation and operation is one of the important 

products that this thesis delivers. Appendix B - The ABLPA Preprocessor Software will 

discuss all modules developed for the ABLPA Preprocessor, along with their 

corresponding interface parameters. Appendix C - The ABLPA Main Processor 

Software will discuss modules developed for the Main Processor that have not already 

been covered in Appendix B. The actual implementation code listings for the calulation 

modules is given in Appendix D - Implementation Code. 

A.3 The Test Modules for Each Software Library 

There are other modules that have been developed exclusively for the task of 

calling and interfacing with the Preprocessor the Main Processor, and each of the other 

ten libraries. They are strictly "front-end" interfaces for the calculation modules that can 

be used to run and test the algorithms that have been developed within the calculation 

modules. These test modules have been kept as "simple" as possible, while still 

maintaining ease-of-use, to avoid the necessity of "testing" the test modules. They 

consist of a graphical interface that collects input to the module(s) being tested, and the 

function call to those modules. The graphical nature of the test modules utilizes quite a 
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bit of compiler-specific organization and terminology to allow easy development of these 

modules. Therefore, any change or recompilation of these graphical interface modules 

will require the user to have a copy of Borland C++ Builder 3 (Standard). This compiler 

will also be required if the user of this software wishes to run the fully compiled software 

packages that have included within them the GUI interfaces. The Test Modules and their 

software code is described further in Appendix E - Test Module Code. 

A.4 The Environment 

These modules have all been developed using a standard desktop IBM compatible 

computer, using a 200 MHz Intel Pentium processor. The modules are compiled to run in 

the Microsoft Windows 95 or 98 operating system environment. Operation in other 

environments has not been tested and is not guaranteed, especially the graphical test 

modules. 

A.5 Test Module Example 

As mentioned previously, the product, C++ Builder 3, made by Borland was used 

to craft a graphical front-end to each library designed. One GUI has been created for 

each functional task (or library) needed in the Preprocessor and Main Processor. Each of 

these modules, where practical, comes with a graphical front-end interface to allow 

testing of individual components. This test module example is included to give the user 

an idea of the design of each front-end. Each front-end is designed simply, without 

contributing to the solution of the algorithm handled by the module being called. 

Because each of these test modules have little worth in themselves, I will demonstrate 
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how just one of the test modules work, and only include a cursory graphical figure when 

describing test modules in the future. The module chosen to describe the interface here is 

the module that interfaces directly with the SGP4 time propagation modules. This GUI 

routine tests modules in the library "SGP4Support". The main calculation module 

("CallSGP4") is held within "SGP4SupportModules.cpp". This module, in turn, calls the 

SGP4 routines created by Air Force Space Command, which are held in 

"SGP4Routines.cpp". The test module Graphical User Interface (GUI) used to call this 

main routine is called "SGP4TestForm", held in a physical module of the same name. 

The graphical interface is shown in Figure A.2. 
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Figure A.2. GUI Interface to the "SGP4 Support" Project 
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A.5.1 Description of Code 

The code for SGP4TestForm is only partially included here. A software 

programmer will notice that much of the code infrastructure is missing. This is because 

C Builder handles much of the behind-the-scenes programming and leaves only the 

event-handlers for implementation by the programmer. So, in reality only the event- 

handlers are shown in the code that follows. An "event-handler" is anything that can be 

manipulated. For instance, any button that can be "pushed" on the GUI may have a small 

routine, called an event-handler, which executes a set of instructions. Having only the 

event handlers in a condensed piece of code allows the maintainer to easily grasp and 

change the nature of the GUI. There are a few things to point out in the code that 

follows. First, there are two main event-handlers associated with this GUI. Their names 

are "FileButtonClick" and "RunButtonClick". This is appropriate because the GUI 

template in Figure A. 1 has exactly two buttons that can be pushed. The First button is the 

"Propagate Using File" button that activates the "FileButtonClick" event-handler, the 

second is the "Run SGP4 (Version3.01)" button that activates the "RunButtonClick" 

event-handler. Notice that each routine is fairly simple and straight-forward. There is no 

attempt to solve any part of the Predictive Avoidance algorithm within the event-handler 

itself. Rather, they simply make a call to the routines that do the work. The sole purpose 

of the event-handler is to take inputs, call a calculation module, and format the resulting 

output. For instance, RunButtonClick simply calls the module "CallSGP4". 

FileButtonClick calls "ReadTLEFile". So these test GUIs can be seen to be simply 

interfaces that allow easy, extensive testing of the calculation modules, which house the 

meat of the project. The code follows on the next few pages. 
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A.5.2 Code Listing for SGP4TestForm 

/* MODULE NAME: 
/* AUTHOR: 
/* DATE CREATED 
/* 
/* PURPOSE: 
/* 
/* 
/* 
/* 
/* 
/* 
/* COMPILER: 
/* 

SGP4TestForm.cpp */ 
Captain David Vloedman */ 
October 10, 1998 */ 

*/ 
This test form module is a test module for the routines */ 
handle calling of the satellite propagator. "SGP4". This*/ 
propagator is US Space Command's satellite time/position*/ 
propagator using general perturbations only. The */ 
version of SGP4 used here is version 3.01 in C */ 

*/ 
*/ 

Borland C++ Builder3 Standard version */ 
This compiler should be used to compile and link.       */ 

/* */ 
/****************************************************************************/ 
/•a*******************************/ 

/* C++BUILDER-SPECIFIC LIBRARIES */ 
/••a******************************/ 

♦include <vcl.h> 
♦pragma hdrstop 
#pragma package(smart_init) 
♦pragma resource "*.dfm" 
/it********************************/ 

/* USER-BUILT LIBRARIES */ 
/a********************************/ 

♦include "SGP4TestForm.h" 
♦include "SGP4SupportModules.h" 
♦include "LaserConstants.h" 
♦include "Satellite.h" 
♦include "ErrorStructure.h" 
♦include "TLEInput.h" 
/A********************************/ 

/* C STANDARD LIBRARIES */ 
/a********************************/ 

♦include <stdio.h> 
♦include <stdlib.h> 
♦include <string.h> 
♦include <iostream.h> 
♦include <conio.h> 
♦include "SGP4Routines.h" 
♦include "TimeModules.h" 
/*******************************/ 

/*      CREATE THE FORM        */ 
/•a*****************************/ 

TForml *Forml; 

// _  

 fastcall TForml::TForml(TComponent* Owner) 
: TForm(Owner) 

{ 
} 
/••♦•••A********************************************/ 

/* THIS EVENT HANDLER PROCEDURE HANDLES THE BUTTON*/ 
/* THAT CAN LOAD A TEST CASE FROM A FILE FOR LATER*/ 
/*  EXECUTION */ 
/••a************************************************/ 

void fastcall TForml::FileButtonClick(TObject *Sender) 
{ 

91 



ErrorStructure ErrorList; 
SatStructure *SatArray = new SatStructure; 

char Errors[MAXERRORS][MAXMESSAGELENGTH]; 
int i ; 
ErrorStructure *ErrorPtr=&ErrorList; /* A POINTER TO ERRORLIST */ 
char FileName[MAXNAMELENGTH] = " 

/A**************************************************/ 

/*  GET NAME OF FILE TO READ TEST CASE FROM        */ 
/a**************************************************/ 

strcpy(FileName,FileEdit->Text.c_str()); 

/••A************************************************/ 

/*  READ ALL SATELLITES FROM THE FILE, AND USE THE */ 
/*  FIRST SATELLITE IN THE FILE AS THE TEST CASE   */ 
/•A*************************************************/ 

ReadTLEF i1e(F i1eName, 
*SatArray, 
♦ErrorPtr); 

/•A*************************************************/ 

/*  NOTE THE Sat[0] IS THE FIRST SATELLITE IN THE  */ 
/*  FILE */ 
/•A*************************************************/ 

SSCEdit->Text = String(SatArray->Sat[0].GetSSCNumber()); 
ClassEdit->Text = String(SatArray->Sat[0].GetSecurityClass()); 
IntIDEdit->Text = String(SatArray->Sat[0].GetInternationalID()); 
EpochYearEdit->Text = String(SatArray->Sat[0].GetEpochYear()); 
EpochDayEdit->Text = String(double(SatArray->Sat[0].GetEpochDay())); 
RevSquaredEdit->Text = String(double(SatArray->Sat[0].GetRevSquared())); 
RevCubedEdit->Text = String(double(SatArray->Sat[0].GetRevCubed())); 
BStarEdit->Text = String(double(SatArray->Sat[0].GetBStarDrag())); 
EphemerisTypeEdit->Text = String(SatArray->Sat[0].GetEphemerisType()); 
ElSetEdit->Text = String(SatArray->Sat[0].GetElementSetNumber()); 
InclinationEdit->Text = String(double(SatArray->Sat[0].GetInclination()) ; 
RightAscensionEdit->Text=String (double (SatArray- 

>Sat[0] .GetRightAscensionO ) ) ; 
EccentricityEdit->Text = String(double(SatArray- 

>Sat[0].GetEccentricity())); 
ArgumentOfPerigeeEdit->Text = String(double(SatArray- 

>Sat[0].GetArgumentOfPerigeeO)) ; 
MeanAnomalyEdit->Text = String(double(SatArray->Sat[0].GetMeanAnomaly())] 
MeanMotionEdit->Text = String(double(SatArray->Sat[0].GetMeanMotion())); 
RevNumberEdit->Text = String(SatArray->Sat[0].GetRevAtEpoch()); 

/a**************************************************/ 

/*    DISPLAY ALL ERRORS */ 
/a**************************************************/ 

CreateDisplayText(ErrorList, Errors); 
if (ErrorList.TotalErrors()!=0) 
{ 

ErrorMemoBox->Lines->Clear(); 
ErrorMemoBox->Lines->Add("THERE ARE ERRORS..."); 
for (i = 0; i<ErrorList.TotalErrors(); i++) 

ErrorMemoBox->Lines->Add(Errors[i]); 
} 
else 
{  ErrorMemoBox->Lines->Clear() ; 

ErrorMemoBox->Lines->Add("No Errors..."); 
} 
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/•A*************************************************/ 

/* THIS PROCEDURE ACTUALLY RUNS THE TEST CASE AS */ 
/* IT HAS BEEN ENTERED INTO THE FORM AND DISPLAYS */ 
/*  THE RESULTS OF THE RUN */ 

void fastcall TForml::RunButtonClick(TObject *Sender) 
{ 

ErrorStructure ErrorList; 
ErrorStructure *ErrorPtr=&ErrorList; /* A POINTER TO ERRORLIST */ 
Satellite* Sat; 

Sat = new Satellite; 
char Errors[MAXERRORS][MAXMESSAGELENGTH]; 
int i ; 
char    buff[MAXNAMELENGTH]; 
double JulianDate; :> 

double  Inclination; 
double  *InclinationPtr = &Inclination; 
double RightAscension; 
double  *RightAscensionPtr = &RightAscension; 
double  Eccentricity; 
double  *EccentricityPtr = &Eccentricity; 
double MeanMotion; 
double  *MeanMotionPtr = &MeanMotion; 
double ArgumentOfPerigee; 
double  *ArgumentOfPerigeePtr = &ArgumentOfPerigee; 
double MeanAnomaly; 
double  *MeanAnomalyPtr = ScMeanAnomaly; 
double X; 
double *XPtr = &X; 
double Y; 
double *YPtr = &Y; 
double Z; 
double *ZPtr = &Z; 
double Xdot; 
double *XdotPtr = &Xdot; 
double Ydot; 
double *YdotPtr = &Ydot; 
double Zdot; 
double *ZdotPtr = &Zdot; 
double Delta; 
double *DeltaPtr = &Delta; 

/*  GET SATELLITE EPHEMERIS INFORMATION      */ 
/it****-****************************************/ 

Sat->SetSSCNumber(SSCEdit->Text.Tolnt()); 
strcpy(buff,ClassEdit->Text.c_str()); 
Sat->SetSecurityClass(buff); 
strcpy(buff,IntIDEdit->Text.c_str()); 
Sat->SetInternationalID(buff); 
Sat->SetEpochYear(EpochYearEdit->Text.Tolnt()); 
Sat->SetEpochDay(EpochDayEdit->Text.ToDouble()); 
Sat->SetRevSquared(RevSguaredEdit->Text.ToDouble()); 
Sat->SetRevCubed(RevCubedEdit->Text.ToDouble()); 
Sat->SetBStarDrag(BStarEdit->Text.ToDouble()); 
Sat->SetEphemerisType(EphemerisTypeEdit->Text.Tolnt()) 
Sat->SetElementSetNumber(ElSetEdit->Text.Tolnt()); 
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Sat->SetInclination(InclinationEdit->Text.ToDouble()); 
Sat->SetRightAscension(RightAscensionEdit->Text.ToDouble()); 
Sat->SetEccentricity(EccentricityEdit->Text.ToDouble()); 
Sat->SetArgumentOfPerigee(ArgumentOfPerigeeEdit->Text.ToDouble()) 
Sat->SetMeanAnomaly(MeanAnomalyEdit->Text.ToDouble()); 
Sat->SetMeanMotion(MeanMotionEdit->Text.ToDouble()); 
Sat->SetRevAtEpoch(RevNumberEdit->Text.ToInt()); 
JulianDate = JulianDateEdit->Text.ToDouble(); 

/•a*************************************************/ 

/*  MAKE A CALL TO THE SGP4 PROPAGATOR */ 
/••a************************************************/ 

CallSGP4(*Sat, 
JulianDate, 
*XPtr, 
*YPtr, 
*ZPtr, 
*XdotPtr, 
*YdotPtr, 
*ZdotPtr, 
*Inc1inat i onPtr, 
*RightAscensionPtr, 
♦EccentricityPtr, 
*MeanMotionPtr, 
*ArgumentOfPerigeePtr, 
*MeanAnomalyPtr, 
*DeltaPtr, 
*ErrorPtr); 

/* Convert Mean Motion from radians/sec to  */ 
/*  revolutions per day */ 
/A********************************************/ 

MeanMotion = MeanMotion * MINUTESPERDAY / TWOPI; 

/•A*************************************************/ 

/*  DISPLAY THE RESULTS OBTAINED FROM SGP4 */ 
/A**************************************************/ 

XEdit->Text = String(X); 
YEdit->Text = String(Y); 
ZEdit->Text = String(Z); 
XdotEdit->Text = String(Xdot); 
YdotEdit->Text = String(Ydot); 
ZdotEdit->Text = String(Zdot); 
DeltaEdit->Text = String(Delta); 
InclinOutEdit->Text = String(Inclination); 
RightAsOutEdit->Text = String(RightAscension); 
EccentricityOutEdit->Text = String(Eccentricity); 
MeanMotionOutEdit->Text = String(MeanMotion); 
ArgOfPerigeeOutEdit->Text = String(ArgumentOfPerigee); 
MeanAnomalyOutEdit->Text = String(MeanAnomaly); 
DeltaEdit->Text = String(Delta); 

/*    DISPLAY ALL ERRORS */ 
/A**************************************************/ 

CreateDisplayText(ErrorList, Errors); 
if (ErrorList.TotalErrors()!=0) 
{ 

ErrorMemoBox->Lines->Clear(); 
ErrorMemoBox->Lines->Add("THERE ARE ERRORS...") 
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for (i = 0; i<ErrorList.TotalErrors(); i++) 
ErrorMemoBox->Lines->Add(Errors[i]); 

} 
else 
{  ErrorMemoBox->Lines->Clear(); 

ErrorMemoBox->Lines->Add("No Errors..."); 
} 

} 
II- 

A.6 Error Handling 

Each of the event-handlers in the code listed above can be seen to have an error 

handling routine that lists out all errors that have been trapped by the program. It is 

important that the structure of this error-handling be known for any programmers in the 

future who may wish to adopt all or part of the coded modules of this project. Each 

module within both the ABLPA Preprocessor and the ABLPA Main Processor have an 

extra parameter in their parameter list that holds and traps any errors handled by the 

program. This error parameter is always the last parameter on the visible parameter list 

and can only be accessed by the manipulation routines held in the module 

"ErrorStructure". These routines and the nature of the error-handling system are 

discussed in greater detail further in this paper. 
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Appendix B. ABLPA Preprocessor Software Implementation 

The Airborne Laser Predictive Avoidance (ABL-PA) Preprocessor is only a part 

of the software developed in this project. Figure B.l illustrates how this preprocessor fits 

into the overall hierarchy of the software. 

A TLE File containing 
the satellites that have 
been determined will 
intersect the laser in a 
given time. 

TLE Input File From 
Space Command 

(All Active Satellites) 

Situation Inputs 
Time, Platform 
Position, etc. 

ABLPA 
Preprocessor 

Preprocessor 
Output 

ABLPA 
Main Processor 

A TLE File containing 
only those satellites that 
are in view of the 
platform during a given 
time period. 

Close Approach 
File 

A TLE File containing 
the satellites that are 
close enough to 
interpolate. 

Figure B.1 Where the ABLPA Preprocessor Fits in the Software 
Hierarchy 

It can be seen that the task of the preprocessor is to take the input file containing all 

active satellites in orbit, and strip out only those satellites that are in view of the laser 

platform at a given time. The preprocessor then creates an output file containing the 

satellites in view. This output file has exactly the same format as the main TLE file, 

except it has fewer satellites within it. 
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B.l Preprocessor Modular Format 

The preprocessor is a conglomeration of many software libraries that were created 

and tested independently before being combined to form the preprocessor. Figure B.2 

shows the basic libraries that comprise the preprocessor, and the modules each library 

contains. Each library and module shown will be explained within this chapter. 

ABLPAPreprocessorForm.cpp 
(CBuilder Graphical Interface) 

TimeModules.cpp 

Convert 
Calendar 
To Julian 

Convert 
Julian To 
Calendar 

PAPreprocessor.cpp 
(Main C++ Routine) 

T 
EvaluateEphemerisModules.cpp 

Evaluate Ephemeris 

Compare Orbit FindThetaG 

—-*■ 

TLEInput.cpp 

Read TLE 
File 

SGP4 SupportModules.cpp 

Call SGP4 

SGP4Routines.cpp 
(Not created by 

Author) 

ErrorStructure. cpp 

Laser Constants.!! 

Satellite, cpp 

Aircraft, cpp 

(Cor e Modul es - 
Called by All) 

Figure B.2 ABLPA Preprocessor Calling Tree 

From Figure B.2 it can be seen that modules could be roughly grouped into six libraries. 

Each of these is listed in Table B.l. Each of these libraries of modules has been designed 

to be a project in and of themselves, tested using their own GUI as seen in the table. 
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Table B.1 The Six Libraries Composing the ABLPA Preprocessor 

Software 
Library Title 

Modules Tested 
(C++) 

GUI Interface 
Module 

(C++Builder 3) 

Purpose 

ABLPA 
Preprocessor 

All preprocessor modules 
as shown in Figure B.2 PAPreprocessorForm 

To provide a user- 
friendly way to run 

the preprocessor 
Test Error 
Structure 

ErrorS tructure. cpp 
CreateDisplayText 

AddError 
GrabError 

TestErrorStructure 
Text Only - 

Non-(Graphical) 

To test the error 
handling routines 
used to record and 

store errors 
SGP4 Support CallSGP4 

SGP4Routines 
Core Modules SGP4TestForm 

To test the interface 
with SGP4, as well 

as the output 
received from the 

propagator 
Time Module 

Test 
ConvertJulianToCalendar 
ConvertCalendarToJulian 

Core Modules ' 
TimeTestForm 

To test the time 
conversion modules 

TLE Input Test 
ReadTLEFile 
Core Modules TLETestForm 

To test the module. 
that reads the Two- 
Line Element Set 
files used by the 

software 
Test Evaluate 

Ephemeris 
EvaluateEphemeris 

CompareOrbit 
FindThetaG 

Core Modules 
EvaluateEphemerisForm 

To test the 
evaluation of a 
single satellite 

The discussion of the preprocessor will progress through each of these libraries 

individually, discussing the nature of the function served by the library, as well as 

comments on each module within that library. The interfaces and input/output 

parameters used with each module will be emphasized. The actual code for each module 

in the ABLPA Preprocessor will be listed out in Appendix D.  The code for each sub- 
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project GUI interface will be listed in Appendix E. Only the "Header File" or the files 

with the ".h" extension will be listed here in the discussion, because they are short and 

contain important interface information that should be discussed. All of the 

implementation code will be included in their respective Appendices. 

B.2 The Core Modules 

The Core Modules are modules that are used extensively throughout bot the 

Preprocessor and the Main Processor. They consist of the modules, Aircraft.cpp, 

Satellite.cpp, LaserConstants.h, and ErrorStructure.cpp. Except for ErrorStructure.cpp, 

none of the Core Modules are tested exclusively, because their design is fairly simple, 

and their function is easily recognized. 

B.2.1 Aircrafth 

This module defines the "Aircraft" object. This object, or data-type, is used to 

store all information needed about the aircraft platform parameters, including position, 

speed, and etc. Its header file, which follows, describes the various manipulation 

functions defined to work with the Aircraft object.  If more clarification is required, the 

implementation listing in Appendix D may help to clarify. 

/•••a************************************************************************/ 

/* MODULE NAME:    Aircraft.h */ 
/* AUTHOR:        Captain David Vloedman */ 
/* DATE CREATED:   Sept 19, 1998 */ 
/* */ 
/* PURPOSE:       This module of code houses the Aircraft class object. */ 
/* */ 
/* COMPILER:      Borland C++ Builder3 Standard version */ 
/* This compiler should be used to compile and link. */ 
/* */ 
/****************************************************************************/ 

#ifndef AircraftH 
#define AircraftH 

ttinclude "LaserConstants.h" 
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class Aircraft { 
public: 

Aircraft(); 
-Aircraft(); 

*   AIRCRAFT MANIPULATION FUNCTIONS 
/***************************************/ 

void SetLatitudeDegree(int Id); 
void SetLatitudeMinute(int Id); 
void SetLatitudeSecond(double Is); 
void SetLatitudeHemispherefint h) ; 
void SetLongitudeDegree(int Id); 
void SetLongitudeMinute(int Id); 
void SetLongitudeSecond(double Is); 
void SetVelocityX(double vel); 
void SetVelocityY(double vel); 
void SetVelocityZ(double vel); 
void SetAltitude(double alt) ; 

int GetLatitudeDegree(); 
int GetLatitudeMinute(); 
double GetLatitudeSecond(); 
int GetLatitudeHemisphere() 
int GetLongitudeDegreeO 
int GetLongitudeMinute() 
double GetLongitudeSecondO 
double GetVelocityXf) 
double GetVelocityYO 
double GetVelocityZ() 
double GetAltitudeO ; 

private 
int 
int 

LatitudeDegree 
Lat i tudeMinute 

double LatitudeSecond 
int LatitudeHemisphere; 
int LongitudeDegree; 
int LongitudeMinute; 
double LongitudeSecond; 
int VelocityX; 
int VelocityY; 
int VelocityZ; 
double Altitude; 

}; 

#endif 
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B.2.2 Satellite.h 

This module defines the "Satellite" object. This object, or data-type, is used to 

store all information needed about the satellite ephemeris parameters. Its header file, 

which follows, describes the various manipulation functions defined to work with the 

Satellite object. If more clarification is required, the implementation listing in Appendix 

D may help to clarify. 

/* MODULE NAME:    Satellite.h */ 
/* AUTHOR:        Captain David Vloedman */ 
/* DATE CREATED:   July 25, 1998 */ 
/* */ 
/* PURPOSE:       This module of code houses the Satellite class object.  */ 
/* */ 
/* COMPILER:       Borland C++ Builder3 Standard version */ 
/*                 This compiler should be used to compile and link. */ 
/* */ 

#ifndef SatelliteH 
#define SatelliteH 

#include "LaserConstants.h" 

class Satellite { 
public: 

Satellite(); 
-Satellite(); 

/* SATELLITE MANIPULATION FUNCTIONS. MANY OF THESE */ 
/* FUNCTIONS ARE BASED ON THE FIELDS OF THE TWO-LINE */ 
/*   ELEMENT SET INPUT FORMAT USED BY SPACE COMMAND.   */ 

void SetNamefchar name[MAXINPUTLINELENGTH]); 
void SetSSCNumber(long int ssc); 
void SetRevAtEpoch(long int rev); 
void SetSecurityClass(char secclass[CLASSLENGTH+1]); 
void SetInternationalID(char intID[INTNUMLENGTH+l]); 
void SetEpochYear(int eyear); 
void SetEphemerisType(int etype); 
void SetElementSetNumber(int esetnum); 
void SetEpochDaydong double eday) ; 
void SetRevSquared(long double rev2); 
void SetRevCubed(long double rev3); 
void SetBStarDragdong double bstar) ; 
void SetSemiMajorAxis(long double sma); 
void SetEccentricitydong double e) ; 
void SetRightAscension(long double ra); 
void Setlnclinationdong double i) ; 
void SetArgumentOfPerigee(long double ap); 
void SetMeanAnomaly(long double ma); 
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void SetEccentricAnomaly(long double ea); 
void SetTrueAnomaly(long double ta); 
void SetScalarRadius(long double sr); 
void SetMeanMotion(long double mm); 
void Satellite::SetTLELinel(char line[MAXINPUTLINELENGTH]) 
void Satellite::SetTLELine2(char line[MAXINPUTLINELENGTH]) 

char*      GetName(); 
long int   GetSSCNumber(); 
long int    GetRevAtEpoch(); 
char*      GetSecurityClass(); 
char*      GetInternationalID(); 
int        GetEpochYear(); 
int        GetEphemerisType(); 
int        GetElementSetNumber(); 
long double GetEpochDay(); 
long double GetRevSquared(); 
long double GetRevCubed(); 
long double GetBStarDrag(); 
long double GetSemiMajorAxis(); 
long double GetEccentricity(); 
long double GetRightAscension(); 
long double Getlnclination(); 
long double GetArgumentOfPerigee(); 
long double GetMeanAnomaly(); 
long double GetEccentricAnomaly(); 
long double GetTrueAnomaly(); 
long double GetScalarRadius(); 
long double GetMeanMotion(); 
char* Satellite::GetTLELinel(); 
char* Satellite::GetTLELine2(); 

private : 
long double SemiMajorAxis; 
long double Eccentricity; 
long double RightAscension; 
long double Inclination; 
long double ArgumentOfPerigee; 
long double MeanAnomaly; 
long double EccentricAnomaly; 
long double TrueAnomaly; 
long double ScalarRadius; 
char       Name[MAXNAMELENGTH]; 
long int   SSCNumber; 
long int   RevAtEpoch; 
char       SecurityClass[CLASSLENGTH+1]; 
char       InternationalID[INTNUMLENGTH+l]; 
int        EpochYear; 
int        EphemerisType; 
int        ElementSetNumber; 
long double EpochDay; 
long double RevSguared; 
long double RevCubed; 
long double BStarDrag; 
long double MeanMotion; 
char        TLELinel[MAXINPUTLINELENGTH]; 
char       TLELine2[MAXINPUTLINELENGTH]; 
}; 

/*  THIS STRUCTURE HOLDS AN ARRAY OF SATS    */ 
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struct SatStructure { 
Satellite Sat[MAXSATELLITES]; 
int NumSats; 

}; 

#endif 

B.2.3 LaserConstants.h 

LaserConstants.h is the header file where all of the physical constants for the 

Preprocessor and the Main Processor are defined. The header file follows. 

/•it**************************************************************************/ 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

MODULE NAME: 
AUTHOR: 
DATE CREATED: 

PURPOSE: 

COMPILER: 

LaserConstants.h 
Captain David Vloedman 
July 27, 1998 

This module houses some of the basic constants used in 
the deconfliction of a laser beam with the path of a 
satellite. 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

#ifndef LaserConstantsH 
#define LaserConstantsH 

/*************************   CONSTANT DEFINITIONS     ***********************/ 

#define MAXNAMELENGTH 50 /* 
#define GRAVITYCONSTANT 398601000 /* 
♦define MAXMESSAGELENGTH 300 /* 
♦define MAXERRORS 50 /* 
♦define MAXSATELLITES 1000 /* 
♦define NOERRORS 0 /* 
♦define ERRORFOUND 1 /* 
♦define MAXINPUTLINELENGTH  70 /* 
♦define EARTHRADIUS 6378.135 /* 
♦define MUEARTH 398601 /* 
♦define PI             3 .14159265358979/* 
♦define TWOPI         6. 283185307179586/* 
♦define DEGTORADIANS 0.01745329252 /* 
♦define RADTODEGREES 57.2957795131 /* 
♦define MINUTESPERDAY 1440 /* 
♦define SECSSIDEREALDAY 86164.09054 /* 
♦define SECSPER24HOURS 86400 /* 
♦define SECSPERHOUR 3600 /* 
♦define LATEREFERENCE 31536000 /* 

/* 
/* 
/* 
/* ♦define MMREVSPERDAY 8681660.4 
/* 
/* 

EACH NAME CAN BE ONLY 50 CHARS MAX */ 
m/sec */ 
MAXIMUM LENGTH OF AN ERROR MESSAGE */ 
MAX NUMBER OF ERROR MESSAGES */ 
MAX SATELLITES THAT CAN BE READ */ 
BOOLEAN ERROR FLAG */ 
BOOLEAN ERROR FLAG */ 
MAXIMUM CHARS OF LINE IN INPUT FILE*/ 
EARTH RADIUS IN KILOMETERS */ 
GRAV CONSTANT IN km3/sec2 */ 
OBVIOUS */ 
OBVIOUS */ 
DEGREE TO RADIAN CONVERSION FACTOR */ 
RADIAN TO DEGREE CONVERSION FACTOR */ 
DAYS TO MINUTES CONVERSIONS FACTOR */ 
♦ OF SECONDS IN A SIDEREAL DAY     */ 
♦ OF SECONDS IN 24 HOURS */ 
♦ OF SECONDS IN AN HOUR */ 
TIME IN SECONDS BY WHICH THETA G */ 
CAN BE SAFELY PROPAGATED. NOTE: */ 
31536000 = 365*24*3600 (1 YEAR IN  */ 

SECONDS) */ 
THIS IS USED TO EXTRACT THE SEMI */ 
MAJOR AXIS FROM THE MEAN MOTION */ 
REVOLUTIONS PER DAY.  IE: */ 
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/* MM = 8681660.4 * aA(-3/2) 
/•••a***********************************************************/ 

/* THE FOLLOWING CONSTANTS DEFINE BOTH THE STARTING POSITIONS */ 
/* OF EACH OF THE INPUT FIELDS IN THE TWO LINE ELEMENT        */ 
/* (or TLE) INPUT FILE AND THE LENGTH OF THOSE FIELDS.  THEY  */ 
/* ARE EXPRESSED IN TERMS OF CHARACTER POSITION FROM THE      */ 
/* BEGINNING OF THE LINE (POS), AND LENGTH OF FIELD (LENGTH). */ 
/*  THE LENGTH IS ALSO IN CHARACTERS OF THE FIELD (NOT DIGITS).*/ 
/A**************************************************************/ 

*/ 

♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 
♦define 

♦endif 

CARDPOS 1 
CARDLENGTH 1 
SSCPOS 3 
SSCLENGTH 5 
CLASSPOS 8 
CLASSLENGTH 1 
INTNUMPOS 10 
INTNUMLENGTH 8 
EYEARPOS 19 
EYEARLENGTH 2 
EDAYPOS 21 
EDAYLENGTH 12 
REV2POS 34 
REV2LENGTH 10 
REV3POS 45 
REV3LENGTH 6 
REVPOWERPOS 51 
REVPOWERLENGTH 2 
BSTARPOS 54 
BSTARLENGTH 6 
BPOWERPOS 60 
BPOWERLENGTH 2 
ETYPEPOS 63 
ETYPELENGTH 1 
ELSETPOS 65 
ELSETLENGTH 4 
INCLINPOS 9 
INCLINLENGTH 8 
RIGHTASPOS 18 
RIGHTASLENGTH 8 
ECCPOS 27 
ECCLENGTH 7 
ARGPERPOS 35 
ARGPERLENGTH 8 
MEANANPOS 44 
MEANANLENGTH 8 
MEANMOPOS 53 
MEANMOLENGTH 11 
EPOCHREVPOS 64 
EPOCHREVLENGTH 5 

/* CARD NUMBER 

/* SSC NUMBER 

/* SECURITY CLASSIFICATION 

/* INTERNATIONAL NUMBER 

/* EPOCH YEAR 

/* EPOCH DAY 

/* REVOLUTIONS PER DAY SQUARED 

/* REVOLUTIONS PER DAY CUBED 

/* REVOLUTIONS PER DAY CUBED 

/* BSTAR DRAG 

/* BSTAR DRAG 

/* EPHEMERIS TYPE 

/* ELEMENT SET NUMBER 

/* INCLINATION 

/* RIGHT ASCENSION 

/* ECCENTRICITY 

/* ARGUMENT OF PERIGEE 

/* MEAN ANOMALY 

/* MEAN MOTION (Revolutions per day) 

/* REVOLUTION NUMBER AT EPOCH 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 
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B.3 The Error Structure Project 

This portion of the preprocessor deals with the handling, recording, and 

displaying of errors within the software. The error handling modules are used throughout 

both the Preprocessor and the Main Processor. The three modules that are used for error 

handling are all held in ErrorStructure.cpp. These three modules are CreateDisplayText, 

AddError, and GrabError. ErrorStructure.cpp also defines the ErrorStructure object, 

that is used to store all errors recorded. The Test Error Project has only a text-driven user 

interface that can be run in the DOS environment. 

B.3.1 AddError 

This module will add an error to the ErrorStructure, given information about the 

error being recorded.   It receives this information via three input parameters described 

below. 

Inputs 

char moduleName [MAXNAMELENGTH] The Text name of the software 
module in which the error occurred. MAXNAMELENGTH is defined in 
LaserConstants.h. 

char description [MAXMESSAGELENGTH] A text description of the 
error. MAXMESSAGELENGTH is defined in LaserConstants.h. 

int       severity    The severity of the error: 
0 = Warning only 
1 = Critical Error (An error terminal to the program) 

AddError gives no tangible outputs, but loads the information into the ErrorStructure. 
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\ B.3.2 GrabError 

GrabError grabs an error from the ErrorStructure. As inputs, GrabError requires 

only the number of the error to be retrieved. 

Inputs 

int        number     This is the only input GrabError requires.  It is the number 
(between 1 and MAXERRORS) of the error to be fetched. 

Outputs 

char    moduleName [MAXNAMELENGTH]   The module where the error being 
fetched occurred. 

char     description [MAXMESSAGELENGTH]   The description of the error 
being fetched. 

int       aseverity The severity of the error: 
0 = Warning only 
1 = Critical Error (An error terminal to the program) 

int       & found A boolean flag telling whether the error asked for was found: 
0 = Not found 
1= Found 

B.3.3 CreateDisplayText 

There was a need to convert the errors from the ErrorStructure format to straight 

text, so that the errors could be accessed by outside interfaces that only recognize C- 

Strings. This module converts the list of errors in the ErrorStructure to an ordinary array 

of type char. 

Inputs 

ErrorStructure    terrors This   would   be   the   variable   of  type 
ErrorStructure that holds the errors to be converted. 
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Outputs 

char text[MAXERRORS] [MAXMESSAGELENGTH]    This is a two- 
dimensional array or characters that holds a one-line combined description of 
each error in the ErrorStructure. 

The header file describing AddError, GrabError, and CreateDisplayText, and the rest of 

the ErrorStructure library, follows. Notice the modules CriticalError and WarningError 

are used to assess whether any errors of those respective types have occurred. 

B.3.4 The ErrorStructurch Header File 

I* MODULE NAME:    ErrorStructure.h */ 
/* AUTHOR:        Captain David Vloedman */ 
/* DATE CREATED:   July 25, 1998 */ 
/* */ 
/* PURPOSE:       This module of code houses the error structure which */ 
/* will be used to hold and trap any error conditions that */ 
/* arise during the operation of the program. */ 
/* */ 
/* COMPILER:      Borland C++ Builder3 Standard version */ 
/* This compiler should be used to compile and link. */ 
/* */ 
/it***************************************************************************/ 

iifndef ErrorStructureH 
#define ErrorStructureH 

♦include "LaserConstants.h" 

class ErrorStructure { 
public: 

ErrorStructure(); /* CONSTRUCTOR */ 
-ErrorStructure(); /* DESTRUCTOR */ 

/* ErrorStructure MANIPULATION FUNCTIONS */ 
/A***************************************************************************/ 

/•A**************************************************************************/ 

/*  FUNCTION NAME:  AddError */ 
/* AUTHOR:        Captain David Vloedman */ 
/*  DATE CREATED:   July 25, 1998 */ 
/* */ 
/*  PURPOSE:       This function is used to record an error into the error */ 
/* structure. */ 
/•a**************************************************************************/ 

void AddError(char moduleName[MAXNAMELENGTH], 
char description[MAXMESSAGELENGTH], 
int   severity); 
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/* FUNCTION NAME: GrabError */ 
/* AUTHOR: Captain David Vloedman */ 
/* DATE CREATED: July 25, 1998 */ 
/* */ 
/* PURPOSE: This function is used to retrieve an error that has been*/ 
/* previously added to the error structure. */ 

void GrabError(int number, 
char moduleName[MAXNAMELENGTH], 
char description[MAXMESSAGELENGTHJ, 
int kseverity, 
int &found); 

/* FUNCTION NAME:  CriticalError */ 
/* AUTHOR:        Captain David Vloedman */ 
/* DATE CREATED:   July 25, 1998 */ 
/* */ 
/* PURPOSE:       This function is used to determine if a critical (fatal)*/ 
/*                error has been detected and recorded yet. */ 
/*                CriticalErrorFound = 1 —> TRUE */ 
/*                CriticalErrorFound = 0 —> FALSE */ 
/* */ 
/■it*-**************************************************************************/ 

int CriticalError(); 

/A***************************************************************************/ 

/* FUNCTION NAME:  WarningError */ 
/* AUTHOR:        Captain David Vloedman */ 
/* DATE CREATED:   July 25, 1998 */ 
/* */ 
/* PURPOSE:       This function is used to determine if a warning (non- */ 
/*                fatal) error has been detected and recorded yet. */ 
/*                WarningFound = 1 —> TRUE */ 
/*                WarningFound = 0 —> FALSE */ 
/* */ 
/•***************************************************************************/ 

int WarningError(); 

/A***************************************************************************/ 

/* FUNCTION NAME:  TotalErrors */ 
/* AUTHOR:        Captain David Vloedman */ 
/* DATE CREATED:   July 25, 1998 */ 
/* */ 
/* PURPOSE:       This function is used to determine how many errors total*/ 
/*                have occurred and been recorded. */ 
/*                ErrorsFound = Total number of errors. */ 
/* */ 

int TotalErrors(); 

/* These private structures cannot be seen */ 
/* outside this module.  They are used to */ 
/* errors and are interfaced with by the */ 
/* public functions. */ 

108 



/••a*****************************************/ 

private : 
int CriticalErrorFound; 
int WarningFound; 
int ErrorsFound; 
char ModuleList[MAXERRORS][MAXNAMELENGTH]; 
char ErrorList[MAXERRORS][MAXMESSAGELENGTH]; 
int Severity[MAXERRORS]; 

}; 

/*******************************^ 

/* FUNCTION NAME: 
/* AUTHOR: 
/* DATE CREATED: 
/* 
/* PURPOSE: 
/* 
/* 
/* 
/* 
/* 
/* INPUTS: 
/* 
/* 
/* OUTPUTS: 
/* 

CreateDisplayText 
Captain David Vloedman 
July 25, 1998 

This function is used to create a simple array of 
character arrays which hold all of the information 
held in the error-structure.  This two-dimensional 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

text array may have messages as long as MAXMESSAGELENGTH*/ 
and can hold MAXERRORS messages. 

NAME: 
errors 

NAME: 
text 

PURPOSE: 
DataStructure holding all errors 

PURPOSE: 
A completely textual version of 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/* errors. */ 
/**********************************************************•*****************/ 

void CreateDisplayText(ErrorStructufe &errors, 
char text[MAXERRORS][MAXMESSAGELENGTH]); 

#endif 
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B.4 The SGP4 Support Library 

The SGP4 Support Library consists of all of the modules used to store and 

interface with the SGP4 satellite ephemeris propagator. Although SGP4 was written 

independently of this project by Air Force Space Command, a copy of it (version 3.01C) 

is stored in the module SGP4Routines.cpp. These external routines are accessed using 

the module "CallSGP4", stored in the SGP4SupportModules library. CallSGP4, and 

consequently SGP4 itself, can be tested using the Graphical User Interface illustrated in 

Figure B.3. The GUI below is controlled by the Cbuilder module SGP4TestForm, which 

was developed to facilitate testing of the nature and behavior of the interface to SGP4. 

m 
IN 

I2169U70564      A»»*** of Pengs« Tnwl 
,„.-. *. ... ;    

Rev«/Day Squared -Jo- MMoArwn*     • J282 9894 •. 

R^/DayCutod    ft MeanMcta, 114.5700563     • 
• •      l|S» 

BSt*0ras> jo Rw« Epoch n m 

Ephemere Typo       jo JiAsnDate to Prop |l 10291906229 

No Errors 

Figure B.3. Testing GUI Used to Access CallSGP4 
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B.4.1 CaIISGP4 

As mentioned previously, CallSGP4 is the module used to call and interface with 

SGP4. The input and output interface used by SGP4 is proprietary to the Air Force, and 

will not be discussed here, however the interface to CallSGP4 can be explained. 

Inputs 

struct    Satellite &Sat This first input is just the Satellite object 
that holds all of the ephemeris information gleaned from a Two-Line 
Element Set file, and populated using the ReadTLEFile module. 

double JulianDate This is the modified Julian Date (The Julian Date - 
2440000) that needs to be propagated to. This is the actual time at which the user 
wishes to find the position of the satellite. 

Outputs 

double     &X     The X coordinate of the satellite at the Julian Date specified, 
given in terms of the ECI frame, in kilometers. 

double     &Y     The Y coordinate of the satellite at the Julian Date specified, 
given in terms of the ECI frame, in kilometers. 

double     &Z     The X coordinate of the satellite at the Julian Date specified, 
given in terms of the ECI frame, in kilometers. 

double    &Xdot The velocity in the X direction (ECI frame) of the satellite at 
the Julian Date specified, in kilometers per second. 

double    &Ydot The velocity in the Y direction (ECI frame) of the satellite at 
the Julian Date specified, in kilometers per second. 

double     &Zdot The velocity in the Z direction (ECI frame) of the satellite at 
the Julian Date specified, in kilometers per second. 

double     &Inclination The inclination of the satellite at the Julian Date 
specified, in degrees. 

double      fcRightAscension  The Right Ascension of the satellite at the 
Julian Date specified, in degrees. 

Ill 



double &Eccentricity The Eccentricity of the satellite at the Julian Date 
specified, in degrees. 

double &MeanMotion The Mean Motion of the satellite at the Julian Date 
specified. 

double &ArgumentOf Perigee The Argument of Perigee of the satellite 
at the Julian Date specified, in degrees. 

double &MeanAnomaly The Mean Anomaly of the satellite at the Julian 
Date specified, in degrees. 

double &Delta This is the time that has elapsed between the time that the 
original ephemeris data for the satellite (held in the Satellite object) and the Julian 
propagation date specified. In other words, the amount of time (in minutes) that 
has been propagated. 

ErrorStructure       &ErrorList     The error handling object. 

B.4.2 The SGP4SupportModules.h Header File 

/••A*************************************************************************/ 

SGP4SupportModules.h */ 
Captain David Vloedman */ 
October 20, 1998 */ 

*/ 
This set of modules supports incorporating "SGP4", a */ 
Satellite position/time propagator developed by */ 
United States Space Command. These modules were */ 
developed for SGP4 Version 3.01C. They simply serve as */ 
an interface between this project and SGP4. */ 

*/ 
Borland C++ Builder3 Standard version */ 
This compiler should be used to compile and link. */ 

/* */ 

#ifndef SGP4SupportModulesH 
idefine SGP4SupportModulesH 

#include "ErrorStructure.h" 
/****************************************************************************/ 
/***********************      FUCTIONS        *****************************/ 

/*  FUNCTION NAME:  CallSGP4 */ 
/*  AUTHOR:        Captain David Vloedman */ 
/*  DATE CREATED:   October 20, 1998 */ 
/* */ 
/*  PURPOSE:       This procedure will take elements already existing     */ 
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/* MODULE NAME: 
/* AUTHOR: 
/* DATE CREATED 
/* 
/* PURPOSE: 
/* 
/* 
/* 
/* 
/* 
/* COMPILER: 
/* 



/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

INPUTS: 

OUTPUTS: 

COMPILER: 

within the Predictive Avoidance Project code and adapt 
that information slightly to be used by SGP4 version 
3.01.  It will then make a call to SGP4 and return the 
results. 

NAME: 
Sat 

JulianDate 

NAME: 
X 

Xdot 
Ydot 
Zdot 
Inclination 
RightAscension 
Eccentricity 
ArgumentOfPerigee 
Mean Anomaly 
Delta 

ErrorList 

DEFINITION: 
Holds all ephemeris information 
for the Satellite, being studied 
The time to which the position 
of sat should be propagated to 
DESCRIPTION: 
X axis pos in ECI frame at Jul 
date 
Y axis pos in ECI frame at Jul 
date 
Z axis pos in ECI frame at Jul 
date 
Velocity vector in X direction 
Velocity vector in Y direction 
Velocity vector in Z direction 
Inclination at Julian Date 
Right Ascension at Julian Date 
Eccentricity at Julian Date 
Arg of Perigee at Julian Date 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

The Mean Anomanly at Julian Date*/ 
The amount of time in seconds 
that has transpired between the 
actual ephemeris measurements 
and the Julian Date propagated 
The Errors which have occurred 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

CallSGP4(struct  Satellite &Sat, 
double JulianDate, 
double &X, 
double &Y, 
double &Z, 
double &Xdot, 
double &Ydot, 
double &Zdot, 
double &Inclination, 
double SRightAscension, 
double &Eccentricity, 
double &MeanMotion, 
double ScArgumentOf Perigee, 
double &MeanAnomaly, 
double &Delta, 
ErrorStructure   &ErrorList); 
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B.5 The Time Module Library 

The Time Module Test project consists of two modules that convert back and 

forth between the Calendar Date and the Modified Julian Date. These two modules are 

ConvertCalendarToJulian and ConvertJulianToCalendar. They are both stored in 

the TimeModule.cpp library. Both of these modules can be tested independently with 

any calling routine. The graphical interface shown in Figure B.4 has been developed for 

this purpose. 
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Figure B.4. Graphical Interface Developed for Testing the Time Modules 

The code for this GUI is contained within the C++ Builder module TimeTestForm, and is 

included in Appendix E. 
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B.5.1 ConvertCalenderToJulian 

The module, ConvertCalendarToJulian will take a date in the modern 

calendar, down to a fraction of a second, and convert it to its equivalent Modified Julian 

Date. The Modified Julian Date is simply the Julian Date - 2440000 days. 

Inputs 

int Cyear    The Calender Year (all four digits) of the date to be converted to 
the Modified Julian Date. 

int  Cmonth The Calender Month (1 to 12) of the date to be converted to the 
Modified Julian Date. 

int   Cday   The Calender Day (1 to 366) of the date to be converted to the 
Modified Julian Date. 

int   Chour  The Calender Hour (0 to 24) of the date to be converted to the 
Modified Julian Date. 

int Cminute The Calender Minute (0 to 60) of the date to be converted to the 
Modified Julian Date. 

double  Csecond  The Calender Second (0 - 59.99999999) of the date to be 
converted to the Modified Julian Date. 

Outputs 

double   &JulianDate       The Modified Julian Date converted from the 
Calender Date above. 

ErrorStructure  &ErrorList     The error-handling structure. 

B.5.2 ConvertJulianToCalendar 

The ConvertJulianToCalender module does just the reverse of its sister module. 

It will take a Modified Julian Date and convert it to its equivalent calender date. 
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Inputs 

double JulianDate    The Modified Julian to be converted to an equivalent 
Calender Date. 

Outputs 

int  &Cyear     The Calender Year (all four digits) of the date converted from 
the Modified Julian Date. 

int   &Cmonth  The Calender Month (1 to 12) of the date converted from the 
Modified Julian Date. 

int   &Cday   The Calender Day (1 to 366) of the date converted from the 
Modified Julian Date. 

int   &Chour   The Calender Hour (0 to 24) of the date converted from the 
Modified Julian Date. 

int  &Cminute  The Calender Minute (0 to 60) of the date converted from the 
Modified Julian Date. 

double   &Csecond   The Calender Second (0 - 59.99999999) of the date 
converted from the Modified Julian Date. 

ErrorStructure &ErrorList    The error-handling structure. 

B.5.3 The TimeModule.h Header File 

/****************************************************************************/ 
I*     MODULE NAME:    TimeModules.h */ 
/*  AUTHOR:        Captain David Vloedman */ 
/*  DATE CREATED:   September 10,1998 */ 
/* */ 
/*  PURPOSE:       This module of code houses the Time routines which are */ 
/*                used to retrieve and manipulate the times used as */ 
/*                reference times for satellite passing.  The numerical */ 
/*                algorithms were provided by Professor William Wiesel, */ 
/*                Air Force Institute of Technology, who earlier gleaned */ 
/*                the algorithms from the text, "Numerical Recipes". It */ 
/*                was converted from Fortran to C++ by the author. */ 
/* */ 
/*  COMPILER:      Borland C++ Builder3 Standard version */ 
/*                This compiler should be used to compile and link. */ 
/* */ 
/****************************************************************************/ 
#ifndef TimeModulesH 
#define TimeModulesH 
/••a******************************/ 
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/* USER-BUILT LIBRARIES 
/ ********************************* / 

/* FUNCTION NAME 
/* AUTHOR: 
/* DATE CREATED: 
/* 
/* PURPOSE: 
/* 
/* 
/* INPUTS: 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* OUTPUTS: 
/* 
/* 
/* 
/* COMPILER: 
/* 

ConvertCalenderToJulian 
Captain David Vloedman 
September 10, 1998 

This function will read in the calender date and return 
the equivalent modified Julian date. 

♦include "ErrorStructure.h" 
/****************************************************************************/ 
I ***********************       FUCTIONS *****************************/ 
/****************************************************************************/ 

/****************************************************************************/ 

V 
"/ 
"I 
"I 
V 

"/ 
"/ 
"/ 
"I 
"I 
"/ 
"/ 
"/ 
"/ 
"I 
"/ 
"I 

"I 
"/ 
"/ 

NAME: 
CYear 
Cmonth 
CDay 
CHour 
CMinute 
CSecond 
ErrorList 

NAME: 
JulianDate 

DEFINITION: 
Holds the calender year 
Holds the Calender month(1 
Holds calender day 

the calender hour 
the calender minute 

Holds the calender second 
Holds the Errors found 

12) 

Holds 
Holds 

DEFINITION: 
Holds the Julian equivalent to 

the calender date. 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

/* */ 
/A***************************************************************************/ 

void ConvertCalenderToJulian(int CYear, 
int CMonth, 
int CDay, 
int CHour, 
int CMinute, 
double Csecond, 
double &JulianDate, 
ErrorStructure &ErrorList); 

/ * * 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

**************************************** 

FUNCTION NAME:  ConvertJulianToCalender 
AUTHOR: Captain David Vloedman 
DATE CREATED:   September 10, 1998 

******************************** 

PURPOSE: 

INPUTS: 

OUTPUTS: 

This function will read 
the equivalent calender 

NAME: 
JulianDate 

NAME: 
CYear 
Cmonth 
CDay 
CHour 
CMinute 
CSecond 
ErrorList 

in the Julian date and return 
date. 

DEFINITION: 
Holds the Julian equivalent to 

the calender date. 

DEFINITION: 
Holds the calender year 
Holds the Calender month(1 - 12 
Holds calender day 
Holds the calender hour 
Holds the calender minute 
Holds the calender second 
Holds the Errors found 

* * / 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

)*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
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/* */ 
/* COMPILER:      Borland C++ Builder3 Standard version */ 
/* This compiler should be used to compile and link.      */ 
/* */ 
I****************************************************************************/ 

void ConvertJulianToCalender(int &CYear, 
int  ScCMonth, 
int &CDay, 
int &CHour, 
int  ScCMinute, 
double &CSecond, 
double JulianDate, 
ErrorStructure &ErrorList); 

#endif 
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B.6 The TLE Input Library 

The TLE Input Library consists of the interface module used to read all of the 

input that comes to the software package in the form of Two-Line Element (TLE) set 

files. The TLE data format is used widely to hold satellite ephemeris in a data file. It is 

by the popular software package, Satellite Tool Kit, developed by Analytical Graphics to 

hold satellite information, as well as by Air Force Space Command and a host of other 

users. This is the most likely format of the satellite ephemeris data that must inevitably 

be downloaded to the Preprocessor (and Main processor) for analysis. The Module, 

ReadTLEFile, is the module responsible for reading this type of formatted input file and 

loading the information into an object of type SatStructure which is defined in the 
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Figure B.5. Graphical Interface Developed for Testing ReadTLEFile 
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Satellite.h module. ReadTLEFile is housed in the TLEInput.cpp library. ReadTLEFile 

can be called from any C++ program, and it can be tested using the Graphical 

C++Builder module, TLETestForm, which generates the GUI illustrated in Figure B.5. 

B.6.1 ReadTLEFile 

The ReadTLEFile module is the module that reads a TLE file and populates 

SatStructure with the satellite data contained inside of it.  The format of a sample TLE 

file is shown in Appendix F. 

Inputs 

char   FileNameEMAXNAMELENGTH]     The only input the ReadTLEFile is 
the name of the TLE file to be read. 

Outputs 

struct SatStructure fcSatArray SatArray is an object of type 
SatStructure, which is essentially an array of Satellite objects. It is defined in the 
Satellite.h file. 

ErrorStructure  &ErrorList     The error-handling structure. 

B.6.2 The TLE Inputh Header File 

/* MODULE NAME:    TLEInput.h */ 
/* AUTHOR:        Captain David Vloedman */ 
/* DATE CREATED:   August 18, 1998 */ 
/* */ 
/* PURPOSE:       This module of code houses the routines which input the */ 
/* Two Line Element (TLE) sets from an input file. */ 
/* */ 
/* COMPILER:       Borland C++ Builder3 Standard version */ 
/* This compiler should be used to compile and link. */ 
/* */ 

tifndef TLEInputH 
idefine TLEInputH 
#include "LaserConstants.h" 
#include "Satellite.h" 
♦include "ErrorStructure.h" 

/***********************       FUCTIONS *****************************/ 
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/****************************************************************************, 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

**************************************************************************, 
FUNCTION NAME:  ReadTLEFile 
AUTHOR:        Captain David Vloedman 
DATE CREATED:   August 18, 1998 

PURPOSE: 

INPUTS: 

OUTPUTS: 

COMPILER: 

'/ 
*/ 

This function will read in the information contained in */ 
an input file holding Two Line Element (TLE) sets. */ 
These TLEs hold the ephemeris data for all of the */ 
satellites we will be covering. It uses the TLE */ 
information to populate a satellite data structure which*/ 
is used throughout the program. */ 

*/ 
DEFINITION: */ 
Holds the name of the Input File*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

NAME: 
FileName 

NAME: 
SatArray 
ErrorList 

DEFINITION: 
Returns satellite information 
Returns error information 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

/•it**************************************************************************/ 

void ReadTLEFile(char FileName[MAXNAMELENGTH], 
struct SatStructure &SatArray, 
ErrorStructure ScErrorList) ; 

#endif 
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B.7 The Evaluate Ephemeris Library 

The purpose of the Evaluate Ephemeris portion of the preprocessor is to tie 

together all of the other modules and analyze the data for just one satellite. This library 

is, therefore, the heart of the preprocessor. It can be used to more intensely scrutinize a 

single satellite engagement for error checking or other purposes. The library contains 

three modules, EvaluateEphemeris, CompareOrbit, and FindThetaG. Each module 

can be run independently as a stand alone application, and all are run repeatedly by each 

execution of the preprocessor. A Graphical Interface has been created using C++Builder 

3 to execute these three modules using a single satellite's ephemeris input. This interface 

is shown in Figure B.6, and is controlled by the module, EvaluateEphemerisForm. The 

implementation for this module is contained in Appendix E. 
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B.7.1 EvaluateEphemeris 

EvalaluateEphemeris is the module that calls all of the modules so far discussed, 

including CompareOrbit and FindThetaG. It is the pinnacle module responsible for tying 

together all of the data and algorithms together for a single satellite analysis. It is called 

multiple times by the preprocessor to analyze each satellite in the input file in succession. 

This module is responsible for determining whether or not a satellite is or will be in the 

field of view of the platform during a given time increment. 

Inputs 

struct    Satellite &Sat This first input is just the Satellite object 
that holds all of the ephemeris information gleaned from a Two-Line 
Element Set file, and populated using the ReadTLEFile module. 

struct     Aircraft   &ABLPlatform ABLPlatform is a structure of type 
"Aircraft" that holds all of the information about the position of the aircraft at the 
time of execution of 
the Preprocessor. 

double ThetaGInRad This is the angle at which the Earth's Greenwich 
Meridian is currently at with respect to the ECI frame, where the referent angle is 
the Vernal Equinox. This angle should be in radians. 

double TimeToNextRun The estimated time until the next run of the 
Preprocessor. 

double JulianDate This is the modified Julian Date (The Julian Date - 
2440000) that needs to be propagated to. This is the actual time at which the user 
wishes to find the position of the satellite. 

Outputs 

int &SatelliteInView    This is a boolean variable that tells whether 
or not the satellite being evaluated is currently (as of the Julian Date given) in 
view of the platform given: 

1 = satellite in view 
0 = satellite not in view 
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int &OrbitInView     It may be that the satellite is not in view, but its 
ephemeris, or the path the satellite follows, is currently in view. This is regardless 
of whether the satellite itself is in view. Naturally, if the satellite is in view, the 
orbit must also be in view. 

1 = orbit in view 
0 = orbit not in view 

double &SatX The X coordinate of the satellite at the Julian Date 
specified, given in terms of the ECI frame, in kilometers. 

double &SatY The Y coordinate of the satellite at the Julian Date 
specified, given in terms of the ECI frame, in kilometers. 

double &SatZ The X coordinate of the satellite at the Julian Date 
specified, given in terms of the ECI frame, in kilometers. 

double &SatXdot The velocity in the X direction (ECI frame) of the 
satellite at the Julian Date specified, in kilometers per second. 

double &SatYdot The velocity in the Y direction (ECI frame) of the 
satellite at the Julian Date specified, in kilometers per second. 

double &SatZdot The velocity in the Z direction (ECI frame) of the 
satellite at the Julian Date specified, in kilometers per second. 

double &Delta This is the time that has elapsed between the time that the 
original ephemeris data for the satellite (held in the Satellite object) and the Julian 
propagation date specified. In other words, the amount of time (in minutes) that 
has been propagated. 

double fclnclination The inclination of the satellite at the Julian Date 
specified, in degrees. 

double &RightAscension The Right Ascension of the satellite at the 
Julian Date specified, in degrees. 

double &Eccentricity The Eccentricity of the satellite at the Julian Date 
specified, in degrees. 

double &MeanMotion The Mean Motion of the satellite at the Julian Date 
specified. 

double &ArgumentOf Perigee The Argument of Perigee of the satellite 
at the Julian Date specified, in degrees. 
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double &MeanAnomaly The Mean Anomaly of the satellite at the Julian 
Date specified, in degrees. 

double fcDvector The Dvector is the vector used to evaluate the time to 
rise. Its presence here is used mostly for testing purposes and can be largely 
ignored. For a more complete explanation, see Chapter 2, pages 18-31. 

double &TimeToRise If the orbit of the satellite is in view, but the satellite 
is not in view, this parameter gives the time estimate of when the satellite is 
expected to come into view. 

double &CrltlcalRadius The Critical Radius describes the smallest 
radius at the satellites position that can appear above the artificial horizon of the 
platform. This parameter is also used mostly for testing, and can be disregarded 
when called by other applications. For a more complete explanation, see Chapter 
2, pages 18-31. 

double &SatRadius The Sat Radius describes the radius of the satellite as 
measured from the center of the Earth. This parameter is also used mostly for 
testing, and can be disregarded when called by other applications. For a more 
complete explanation, see Chapter 2, pages 18-31. 

ErrorStructure       &ErrorList    The error handling object. 

B.7.2 CompareOrbit 

Compare Orbit is the module used by EvaluateEphemeris to see if the orbit of the 

satellite is in view of the platform. 

Inputs 

struct    Satellite &Sat This first input is just the Satellite object 
that holds all of the ephemeris information gleaned from a Two-Line 
Element Set file, and populated using the ReadTLEFile module. 

struct     Aircraft   &ABLPlatform ABLPlatform is a structure of type 
"Aircraft" that holds all of the information about the position of the aircraft at the 
time of execution of 
the Preprocessor. 

double ThetaGInRad This is the angle at which the Earth's Greenwich 
Meridian is currently at with respect to the ECI frame, where the referent angle is 
the Vernal Equinox. This angle should be in radians. 
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Outputs 

double &TimeToRise If the orbit of the satellite is in view, but the satellite 
is not in view, this parameter gives the time estimate of when the satellite is 
expected to come into view. 

double &CriticalRadius The Critical Radius describes the smallest 
radius at the satellites position that can appear above the artificial horizon of the 
platform. This parameter is also used mostly for testing, and can be disregarded 
when called by other applications. For a more complete explanation, see Chapter 
2, pages 18-31. 

double &SatRadius The Sat Radius describes the radius of the satellite as 
measured from the center of the Earth. This parameter is also used mostly for 
testing, and can be disregarded when called by other applications. For a more 
complete explanation, see Chapter 2, pages 18-31. 

ErrorStructure       fcErrorList    The error handling object. 

B.7.3 FindThetaG 

The module, FindThetaG, is used to propagate the Earth's rotation in the ECI 

coordinate frame over time. It requires a reference position for the Greenwich Meridian, 

at a given reference time, and the Modified Julian Date of the time that is to be 

propagated to. It is important to remember, that, when using this module, the reference 

time and the propagation date should not be more than a year apart. If they are more than 

a year apart, the user takes the chance that accuracy will fade, making the angle less 

precise. 
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Inputs 

int Ref erenceHour   Reference hour Refers to the Reference angle of 
0g (The angle between the Greenwich meridian and the Vernal Equinox). This 
angles is given in hours, minutes and seconds as opposed to degrees or radians. 
This parameter holds the hours portion of 0g. 

int Ref erenceMinute The minutes portion of 6g. 

double    Ref erenceSecond The seconds portion of 0g. 

double RefModJulianDate This parameter holds the Modified Julian 
Date at which the reference angle, 0g, was taken. This allows 0g to be propagated 
forward to the present moment. 

int CalcYear   The current year. 

int CalcMonth The current month (1-12). 

int CalcDay The current day (1-31). 

int CalcHour The current hour (1-24). 

int CalcMinute The current minute (1-60). 

double CalcSecond The current second. This is the only part of the 
current time that can be given as a non-integer. This field should be accurate to 
at least three decimal places. 

Outputs 

double &ThetaGInRadians This is the instantaneous angle between the 
Greenwich meridian and the Vernal Eqinox at the moment of execution of the 
preprocessor. 

ErrorStructure &ErrorList)   This parameter is both an input and 
output parameter. Each module uses it to assess whether a fatal error has 
occurred somewhere else in the program, and uses it to record errors which may 
be important to the user. 
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B.7.4 The EvaluateEphemerisModules.h Header File 

1* MODULE NAME: 
/* AUTHOR: 
/* DATE CREATED: 
/* 
/* PURPOSE: 
1* 
/* 
/* 
/* COMPILER: 
1* 
1* 

EvaluateEphemerisModules.h 
Captain David Vloedman 
August 18, 1998 

This set of modules supports the preprocessor and are 
used to evaluate whether or not the satellite is ever 
above the platform horizon. 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

*/ 
*/ 
*/ 
"/ 
"I 
"I 
"/ 
"I 
"I 
k/ 
"/ 

#ifndef EvaluateEphemerisModulesH 
#define EvaluateEphemerisModulesH 

♦include "ErrorStructure.h" 
♦include "Aircraft.h" 
♦include "Satellite.h" 

/***********************       FUCTIONS *****************************/ 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

FUNCTION NAME:  EvaluateEphemeris */ 
AUTHOR:        Captain David Vloedman */ 
DATE CREATED:   Sept 19, 1998 */ 

PURPOSE: 

INPUTS: 

OUTPUTS: 

This function will take the position of the aircraft and*/ 
the orbital elements of the satellite and calculate 
whether or not the satellite ever comes into view (or 
above the horizontal horizon) of the the aircraft. 

NAME: 
Sat 

ABLPlatform 

JulianDate 

TimeToNextRun 

ThetaGInRadians 

NAME: 
SatellitelnView 

OrbitlnView 

DEFINITION: 
Holds all ephemeris information 
for the Satellite being studied 
Holds all information about ABL 
Platform position/disposition 
The time to which the position 
of sat should be propagated to 
The amount of time for which the*/ 
current run must last. This is */ 
To determine how much time in */ 
seconds will transpire before */ 
next update is received. */ 
The angle between the Greenwich */ 
Meridian and the Vernal Equinox */ 
at JulianDate. */ 
DESCRIPTION: */ 
If the Satellite is visible to */ 
the ABLPlatform (over the */ 
artificial horizon of the */ 
aircraft. 1 = "yes", 0 = "no" */ 
Is the satellite ever above the */ 
horizon plain of the platform? */ 
(IE, is the orbit itself, regard*/ 
less of the satellite present  */ 
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/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

SatX 

SatY 

SatZ 

SatXdot 
SatYdot 
SatZdot 
Inclination 
RightAscension 
Eccentricity 
ArgumentOfPerigee 
Mean Anomaly- 
Delta 

Dvector 

TimeToRise 

CriticalRadius 

SatRadius 

position, it view? YES=1, NO=0. */ 
X axis pos in ECI frame at Jul */ 
date */ 
Y axis pos in ECI frame at Jul */ 
date */ 
Z axis pos in ECI frame at Jul */ 
date */ 
Velocity vector in X direction */ 
Velocity vector in Y direction */ 
Velocity vector in Z direction */ 
Inclination at Julian Date */ 
Right Ascension at Julian Date */ 
Eccentricity at Julian Date */ 
Arg of Perigee at Julian Date */ 
The Mean Anomanly at Julian Date*/ 
The amount of time in seconds */ 
that has transpired between the */ 
actual ephemeris measurements */ 
and the Julian Date propagated */ 
This is the magnitude of the */ 
satellite radius vector (the */ 
vector from earth center to the */ 
satellite) in the direction of */ 
the Platform radius vector. IE */ 
the component of the sat radius */ 
vector in the Platform radius */ 
direction. This is used to show*/ 
how close the sat is to rising */ 
above the artificial horizon. */ 
Estimated time before the sat */ 
rises above the platform's */ 
artificial horizon. */ 
The Radial component which tells*/ 
the minimum distance an object */ 
must be before it lies above the*/ 
artificial horizon of the */ 
platform. */ 
The Radial altitude of the sat */ 
wrt the platform altitude. This*/ 
is compared to the critical rad */ 

ErrorList 

to determine if the sat lies 
above or below the platform 
artificial horizon. 
The Errors which have occurred 

COMPILER:      Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

/*************************************************ir*iri,i,irir*i,i,i<i<*i,i,i<i.i,iriririr*irj.ir + / 

void EvaluateEphemeris( struct Satellite &Sat, 
struct Aircraft &Platform, 
double ThetaGInRad, 
double JulianDate, 
double TimeToNextRun, 
int   &SatelliteInView, 
int   &OrbitInView, 
double &SatX, 
double ScSatY, 
double &SatZ, 
double kSatXdot, 
double &SatYdot, 
double &SatZdot, 
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double &Delta, 
double Sclnclination, 
double ScRightAscension, 
double ScEccentricity, 
double  ScMeanMot.ion, 
double &ArgumentOfPerigee, 
double &MeanAnomaly, 
double ScDvector, 
double &TimeToRise, 
double &CriticalRadius, 
double StSatRadius, 
ErrorStructure       &ErrorList) 

fir***************************************************************************/ 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

FUNCTION NAME: 
AUTHOR: 
DATE CREATED: 

PURPOSE: 

INPUTS: 

OUTPUTS: 

COMPILER: 

FindThetaG 
Captain David Vloedman 
October 6, 1998 

This function will take a reference position and time 
for a known angle between the Greenwich Meridian and 
the Vernal Equinox, and propagate the angle through 
natural orbit precession at the given calculation time. 
Note that the reference time must always be BEFORE the 
calulation time. 

NAME: 
ReferenceHour 

ReferenceMinute 

ReferenceSecond 

Re fMo dJu1ianDate 

CalcYear 
Calcmonth 
CalcDay 
CalcHour 
CalcMinute 
CalcSecond 

NAME: 
ThetaGInRadians 

ErrorList 

DEFINITION: 
This holds the value of Theta G 
at RefModJulianDate.  The angle 
of Theta G is given in hours, 
minutes, and seconds instead of 
degrees, where 24 hrs = 360 deg 
Holds the minutes of Theta G at 
RefModJulianDate. 
Holds the seconds of Theta G at 
RefModJulianDate. 
This is the reference date when 
an actual observation of the 
true value of theta G was made. 
Holds the current calender year 
Holds the Calender month(1 - 12; 
Holds calender day 
Holds the calender hour 
Holds the calender minute 
Holds the calender second 

DESCRIPTION: 
The angle between the Greenwich 
Meridian and the Vernal Equinox 
at Calc Date. 
The Errors which have occurred 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/* */ 

void FindThetaG(int ReferenceHour, 
int ReferenceMinute, 
double ReferenceSecond, 
double RefModJulianDate, 
int CalcYear, 
int CalcMonth, 
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int    CalcDay, 
int    CalcHour, 
int    CalcMinute, 
double CalcSecond, 
double StThetaGInRadians, 
ErrorStructure   &ErrorList) 

/************************************************************************** 
I* 
I* 
/* 
I* 
/* 
I* 
/* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

FUNCTION NAME: 
AUTHOR: 
DATE CREATED: 

PURPOSE: 

CompareOrbit 
Captain David Vloedman 
October 6, 1998 

INPUTS: 

OUTPUTS 

*/ 
"/ 
*/ 
*/ 

This function will take the position of the aircraft and*/ 
the orbital elements of the satellite and calculate */ 
whether or not the satellite ever comes into view (or */ 
above the horizontal horizon) of the the aircraft.  Note*/ 

*/ 
"/ 
"I 
"I 
"/ 
"/ 
"I 
"I 
"/' 
"I 
V 

that this is at an instantaneous time.  It does not 
account for the precession of the orbit, and so must 
be run at regular close (30 minute) intervals to be 
reliable and accurate. 

NAME: 
Platform.LatitudeDegree 
Platform.LatitudeMinute 
Platform.LatitudeSecond 
Platform.Longi tudeDegree 
Platform.LongitudeMinute 
Platform.LongitudeSecond 
Sat.RightAscension 
Sat. Eccentricity- 
Sat .Inclination 
Sat.MeanMotion 
Sat.ArgumentOfPerigee 
Sat.MeanAnomaly 
Sat.EpochDay 
Sat.EpochYear 
ThetaGInRad 

ErrorList 

:    NAME: 
CriticalRadius 

SatRadius 

OrbitlnView 

(0-90 
(0-60 
(0-60 

int) 
int) 
float) 

DEFINITION: 
Degree of Latitude 
Minute of Latitude 
Second of Latitude 
Degree of Longitude (0-360 int) 
Minute of Longitude (0-60 int) 
Second of Longitude (0-60 
Right Ascension (degrees) 
Eccentricity    (float) 
Inclination (degrees) 
Mean Motion (float) 
Degrees (0-360) 
Degrees (0-360) 
Day of year msrmts taken 
Calender Year (int) 
Angle between Greenwich and 

Vernal Equinox 
Errors that have occured 

(float) 

COMPILER: 

float)*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
/ 
/ 
/ 
/ 
/ 

*/ 
DESCRIPTION: . */ 
The Radial component which tells*/ 
the minimum distance an object */ 
must be before it lies above the*/ 
artificial horizon of the */ 
platform. */ 
The Radial altitude of the sat */ 
wrt the platform altitude.  This*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

is compared to the critical rad 
to determine if the sat lies 
above or below the platform 
artificial horizon. 
Is the satellite ever above the 
horizon plain of the platform? 
(IE, is the orbit itself, regard 
less of the satellite present 
position, it view? YES=1, NO=0. 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 
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/* */ 

void CompareOrbit( struct Satellite &Sat, 
struct Aircraft &Platform, 
double ThetaGInRad, 
int    ScOrbitlnView, 
double &CriticalRadius, 
double &SatRadius, 
ErrorStructure   &ErrorList); 

#endif 
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B.8 The ABLPA Preprocessor 

The ABL Predictive Avoidance Preprocessor is the culmination of the modules 

discussed in this chapter thus far. The purpose of the Predictive Avoidance Preprocessor 

is to read the Two-Line Element (TLE) input file and screen it to pick out any satellites 

which could not be within range of the ABL platform for a set time in the future. The 

TLE set is an input file that contains a list of all satellites for which the user has a 

concern. Each satellite is either in the ABL engagement area, or outside that area. The 

preprocessor returns a shortened TLE input file that contains only those satellites that are 

within the engagement area. Unfortunately, the Main Processor must execute very 

quickly, in a real-time operational role. Therefore, the number of satellites that it needs 
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Figure B.7. The Graphical Interface to the Preprocessor 
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to process should be as small as possible. The preprocessor ensures that this is so. This 

"screening", in turn, reduces the execution time of the Main Processor. The execution 

time of the preprocessor is not an issue, because the preprocessor can be run at any time, 

and there is no need to run the preprocessor in a given time slot. Despite this fact, the 

ABLPA preprocessor generally runs in under one second. This time estimate is for 

running with a standard desktop 200 MHz computer. The Graphical Interface developed 

for the Preprocessor is shown in Figure B.7. Of course, as with all of the modules 

described in this chapter, the user of these libraries could easily create their own 

graphical (or non-graphical) interface, designed to their own tastes. This interface is 

simply provided to make use of the preprocessor more convenient. Notice that most of 

the input and output is handled via TLE files. The format of a standard TLE file is given 

in Appendix F. The final output file resulting from the run of the preprocessor will serve 

as input file for the Main Processor. The next chapter will describe the nature of the 

Main Processor and the way in which this output file will be put to use. 

B.8.1 Inputs 

char InFileName [MAXNAMELENGTH] This parameter holds the name of 
the Two Line Element Set that holds the satellites to be evaluated. 

char OutFileName [MAXNAMELENGTH] Holds the name of the file to 
which the output satellites' Two-Line Element set information is routed to. This 
file holds all of the satellites that have been judged by the Preprocessor to be "in 
view" of the platform. 

struct Aircraft fcABLPlatform ABLPlatform is a structure of type 
"Aircraft" that holds all of the information about the position of the aircraft at the 
time of execution of the Preprocessor. 

int Ref erenceHour Reference hour Refers to the Reference angle of 9g 

(The angle between the Greenwich meridian and the Vernal Equinox).    This 
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angles is given in hours, minutes and seconds as opposed to degrees or radians. 
This parameter holds the hours portion of 0g. 

int    ReferenceMinute The minutes portion of Gg. 

double    Ref erenceSecond The seconds portion of 0g. 

double RefModJulianDate This parameter holds the Modified Julian 
Date at which the reference angle, 6g, was taken. This allows 0g to be propagated 
forward to the present moment. 

int CalcYear   The current year. 

int CalcMonth The current month (1-12). 

int CalcDay The current day (1-31). 

int CalcHour The current hour (1-24). 

int CalcMinute The current minute (1-60). 

double CalcSecond The current second. This is the only part of the 
current time that can be given as a non-integer. This field should be accurate to 
at least three decimal places. 

double TimeToNextRun The estimated time until the next run of the 
Preprocessor. 

ErrorStructure fcErrorList  This parameter is both an input and 
output parameter. Each module uses it to assess whether a fatal error has 
occurred somewhere else in the program, and uses it to record errors that may be 
important to the user. 

B.8.2 Outputs 

int &InFileLength     This parameter tells the user how many 
elements were read in from the file specified by the input parameter 
"InFileNamefMAXNAMELENGTH]". This is the total number of satellites that 
were evaluated during the run of the Preprocessor. 

int &OutFileLength  This parameter tells the user how many 
elements were written to the file specified by the input parameter 
"OutFileName[MAXNAMELENGTH]". This is the total number of satellites 
that were judged to be "in-view" of the platform between the time of the run and 
the next run of the preprocessor. 
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double &ThetaGInDegrees This is the instantaneous angle between the 
Greenwich meridian and the Vernal Eqinox at the moment of execution of the 
preprocessor. 

ErrorStructure &ErrorList  This parameter is both an input and 
output parameter. Each module uses it to assess whether a fatal error has 
occurred somewhere else in the program, and uses it to record errors which may 
be important to the user. 
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B.8.3 The PAPreprocessor.h Header File 

/*********************************************************************** 
PAPreprocessor 
Captain David Vloedman 
August 18, 1998 

*****, 
/* MODULE NAME: 
/* AUTHOR: 
/* DATE CREATED 
/* 
/* PURPOSE: 
/* 
/* 
/* 
/* COMPILER: 
/* 
/* 

*/ 
*/ 
*/ 
*/ 

This set of modules supports/composes the preprocessor  */ 
used to evaluate whether or not the satellites are ever */ 
above the platform horizon. */ 

*/ 
*/ 
*/ 
*/ 

/A***************************************************************************, 

#ifndef PAPreprocessorH 
#define PAPreprocessorH 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

/A***************************************************************************, 

/***********************       FUCTIONS *****************************/ 
/****************************************************************************, 

/** 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

********************************************************** **************** 

FUNCTION NAME: 
AUTHOR: 
DATE CREATED: 

PURPOSE: 

INPUTS: 

PAPreprocessor 
Captain David Vloedman 
October 6, 1998 

This procedure will read in an input file of Two Line 
Element (TLE) sets and perform an analysis to determine 
whether or not they are within view of the airborne 
platform.  If a satellite is in view, it will be added 
to the ouput file, which is the input file for the main 
processor. 

NAME: 
InFileName 
OutFileName 
InFileLength 
ABLPlatform 

ReferenceHour 

ReferenceMinute 

ReferenceSecond 

RefModJulianDate 

CalcYear 
Calcmonth 
CalcDay 
CalcHour 
CalcMinute 
CalcSecond 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

DEFINITION: */ 
Holds name of the satellite file*/ 
File that holds the sats in view*/ 
The total number 
Holds all information about ABL */ 
Platform position/disposition */ 
This holds the value of Theta G */ 
at RefModJulianDate. The angle */ 
of Theta G is given in hours, */ 
minutes, and seconds instead of */ 
degrees, where 24 hrs = 360 deg */ 
Holds the minutes of Theta G at */ 
RefModJulianDate. */ 
Holds the seconds of Theta G at */ 
RefModJulianDate. */ 
This is the reference date when */ 
an actual observation of the */ 
true value of theta G was made. */ 
Holds the current calender year */ 
Holds the Calender monthd - 12)*/ 
Holds calender day */ 
Holds the calender hour */ 
Holds the calender minute */ 
Holds the calender second      */ 
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/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

TimeToNextRun The amount of time for which the*/ 
current run must last.  This is 
To determine how much time in 
seconds will transpire before 
next update is received. 

OUTPUTS: NAME: 
InFileLength 

OutFileLength 

ThetaGInDegrees 

ErrorList 

DESCRIPTION: 
The total number of satellites 
that have been evaluated in the 
InFile 
The total number of satellites 
that are in view of the platform*/ 
and have been put in the outfile*/ 
The rotation angle between the 
Earth's current ECEF position 
and its ECI position. 
Errors that have occured 

COMPILER: 

THE FINAL OUTPUT IS THE ACTUAL OUTFILE ITSELF WHICH IS 
WRITTEN DIRECTLY TO DISK SO IT CAN BE ACCESSED BY THE 
MAIN PROCESSOR. 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

/* */ 

PAPreprocessor( char InFileName[MAXNAMELENGTH], 
char OutFileName[MAXNAMELENGTH], 
int &InFileLength, 
int ScOutFileLength, 
struct Aircraft &Platform, 
int ReferenceHour, 
int ReferenceMinute, 
double ReferenceSecond, 
double RefModJulianDate, 
int CalcYear, 
int CalcMonth, 
int CalcDay, 
int CalcHour, 
int   . CalcMinute, 
double CalcSecond, 
double TimeToNextRun, 
double &ThetaGInDegrees, 
ErrorStructure   &ErrorList); 

#endif 
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Appendix C. ABLPA Main Processor Software implementation 

The Airborne Laser Predictive Avoidance (ABL-PA) Main Processor is the 

second of two software packages developed in this project. Figure C.l illustrates how the 

Main Processor fits into the overall hierarchy of the software. 

A TLE File containing 
the satellites that have 
been determined will 
intersect the laser in a 
given time. 

TLE Input File From 
Space Command 

(All Active Satellites) 

Situation Inputs 
Time, Platform 
Position, etc. 

ABLPA 
Preprocessor 

Preprocessor 
Output 

A TLE File containing 
only those satellites that 
are in view of the 
platform during a given 
time period. 

Intersect File 

ABLPA 
Main Processor 

Close Approach 
File 

A TLE File containing 
the satellites that are 
close enough to 
interpolate. 

Figured Where the ABLPA Main Processor Fits in the Software 
Hierarchy 

It can be seen that the task of the Main Processor is to take the output file containing all 

active satellites in view of the platform, and create two output files. The first output file 

will contain all of the satellites that are forecast to be intersected by the laser during the 

laze duration. The Processor also creates an output file containing the satellites that pass 

closely enough to the laser path to be "interpolated", or analyzed, but may or may not 
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actually intersect the laser. This second "close-approach" file is used more for testing 

and verification than operational use. Statistically, more often than not the Intersection 

File will be empty after a full Main Processor run-through, because the chances of 

"hitting" a satellite (even with a theoretical error-angle) is slim. This close approach file 

can be used to verify the successful run and processing of the Main Processor. Both 

output files have exactly the same format as the main TLE file, except they have fewer 

(or no) satellites within them. 

ABLPAMainProcessorForm.cpp 
(CBuilder Graphical Interface) 

PAMainProcessar. cpp 
(Main C++ Routine) 

TimeModules.cpp 

Convert 
Calendar 
To Julian 

Convert 
Julian To 
Calendar 

Process Satellite 

SGP4SupportModules.cpp 

Call SGP4 

TLEInputcpp 

Read TLE 
File 

ProcessSatel lite, cpp 

Interpolate Vertex 

Target 
Platform 
Again 

Find 
Displacement 
Angles Again 

SGP4Routines.cpp 
(Not created by 

Author) 

'Shaded Modules Not Used 

FindDisplacementAngles.cpp 

Find Displacement 
Angles 

Find Error Angle 

Find Separation Angle 

TargetPlatform.cpp 

TargetLaser.cpp 

TargetSatellite. cpp 

ErrorStructure. cpp 

Laser Con stants.h 

Satellite, cpp 

Aircraft cpp 

(C 
c 

ore Modules 
Jailed by All ) 

Figure C.2 ABLPA Main Processor Calling Tree 

C.l Main Processor Modular Format 

The Processor is a conglomeration of many software libraries that were created 

and tested independently before being combined to form the Processor.    Figure C.2 
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shows the basic modules that comprise the processor, and their grouping into "libraries". 

Each module and library shown will be explained within this chapter. Five of the 

libraries shown in the Figure have already been discussed in Chapter V. These libraries 

Table C.1 The Six Remaining Libraries Composing the ABLPA Main 
Processor 

Sub-Project 
Title 

Modules Tested 
(C++) 

GUI Interface 
Module 

(C++Builder 3) 

Purpose 

ABLPA Main 
Processor 

All processor modules as 
shown in Figure C.2 PAMainProcessorForm 

To provide a user- 
friendly way to run 

the processor 

Target 
Platform TargetPlatform TargetPlatformForm 

To find the 
instantaneous 

position, velocity 
and acceleration of 
the platform, and 
generate the REN 
conversion matrix 

Target 
Laser TargetLaser 

TestTargetLaserForm 
To find the 

position, velocity 
and acceleration 

vectors of the laser 

Target 
Satellite Targets atellite Targets atelliteForm 

To get position and 
velocity of satellite 

from SGP4, and 
compute satellites 

acceleration 
Find 

Displacement 
Angles 

FindDisplacementAngles 
FindErrorAngle 

FindSeparationAngle 
FindDisplacementAngle 

-Form 

To find the 
separation angle 

between the laser 
and the satellite 

Process 
Satellite 

ProcessSatellite 

FindDisplacementAngles 
-Again 

TargetPlatformAgain 

ProcessS atelliteForm 

To pull together all 
of the other 

modules and 
completely process 
one satellite, first 

forecasting a close 
approach angle, 

then interpolating, 
if necessary 
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are the Core Modules, the Error Structure, TLE Input, Time Modules, SGP4 Support 

Modules, and the Evaluate Ephemeris Modules. They will not be covered again here. 

The libraries that have not yet been discussed are listed in Table C.l. Each of these 

libraries are also a project in and of themselves, tested using the GUI as seen in the table. 

The discussion of the preprocessor will progress through each of these libraries 

individually, discussing the nature of the function served by the software library, as well 

as comments on each module within that library. The interfaces and input/output 

parameters used with each module will be emphasized. The actual code for each module 

in the ABLPA Main Processor will be listed out in Appendix D. The code for each 

library-testing GUI interface will be listed in Appendix E. Only the "Header File" or the 

files with the ".h" extension will be listed here in the discussion, because they are short 

and contain important interface information that should be discussed. All of the 

implementation code will be included in their respective Appendices. 

C.2 The Target Platform Library 

The Target platform Library holds the module responsible for processing all 

information pertaining to the platform. This module is TargetPlatform. The 

TargetPlatform module can be run by itself using the Graphical User Interface (GUI) 

created as a front-end to the module for testing purposes. This GUI, Shown in Figure 

C.3, is run using the Borland C++ Builder module TargetPlatformForm. 
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C.2.1 TargetPlatform 

The TargetPlatform Module serves three main functions. The first task performed 

by this module is to find the instantaneous position, velocity, and acceleration of the 

platform at the time specified, in the ECI coordinate frame. The second task is to 

calculate the elements of the ECI-to-REN conversion matrix. Recall that the Radial-East- 

North (REN) coordinate frame rotates with the platform, and so should be found when 

lip 

ltiA**T.£v*Jf.~ 

Figure C.3. The Graphical Interface Used to Test TargetPlatform 

other platform calculations are made. This conversion matrix, which is passed element 

by element in the parameter list (for clarity), is used to rotate all of the satellite vectors to 

the REN frame as well, and so must be made available to the TargetSatellite library as 
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well. The third function performed by TargetPlatform is to rotate each of its output ECI 

platform motion vectors into the REN frame, and output the resulting REN motion 

vectors in the parameter list as well.    This makes for a rather long and unsightly 

parameter list.   However, this is preferable to incorporating everything into a larger 

structure, to allow a more "instructive" interface. 

Inputs 

struct     Aircraft   &ABLPlatform ABLPlatform is a structure of type 
"Aircraft" that holds all of the information about the position of the aircraft at the 
time of execution of 
the Preprocessor. 

double ThetaGInRad This is the angle at which the Earth's Greenwich 
Meridian is currently at with respect to the ECI frame, where the referent angle is 
the Vernal Equinox. This angle should be in radians. 

double JulianDate This is the modified Julian Date (The Julian Date - 
2440000) that needs to be propagated to. This is the actual time at which the user 
wishes to find the position of the satellite. 

Outputs 

double &PlatformECIRhoX The current ECI X position vector of the 
position of the platform with respect to the center of the Earth, as derived from the 
latitude and longitude given in the Aircraft structure input. 

double &PlatformECIPvhoY The current ECI Y position vector of the 
position of the platform with respect to the center of the Earth, as derived from the 
latitude and longitude given in the Aircraft structure input. 

double &PlatformECIRhoZ The current ECI Z position vector of the 
position of the platform with respect to the center of the Earth, as derived from the 
latitude and longitude given in the Aircraft structure input. 

double &PlatformECIRhoXDot The current ECI X velocity vector of 
the velocity of the platform with respect to the center of the Earth, as derived from 
the ECEF velocities given in the Aircraft structure input. 
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double &PlatformECIRhoYDot The current ECI Y velocity vector of 
the velocity of the platform with respect to the center of the Earth, as derived from 
the ECEF velocities given in the Aircraft structure input. 

double &Platf ormECIRhoZDot The current ECI Z velocity vector of the 
velocity of the platform with respect to the center of the Earth, as derived from the 
ECEF velocities given in the Aircraft structure input. 

double &PlatformECIRhoXDotDot The current ECI X acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations only. It is assumed that the 
aircraft itself is maintaining straight and level flight at constant velocity. 

double &Plat£ormECIRhoYDotDot The current ECI Y acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations only. It is assumed that the 
aircraft itself is maintaining straight and level flight at constant velocity. 

double &Platf ormECIRhoZDot Dot The current ECI Z acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations only. It is assumed that the 
aircraft itself is maintaining straight and level flight at constant velocity. 

double &Platf ormRENRhoR The current REN R (Radial) position vector 
of the position of the platform with respect to the center of the Earth, as derived 
from the ECI position vector, rotated into the REN frame. 

double &PlatformRENRhoE The current REN E (East) position vector of 
the position of the platform with respect to the center of the Earth, as derived from 
the ECI position vector, rotated into the REN frame. 

double &PlatformRENRhoN The current REN N (North) position vector 
of the position of the platform with respect to the center of the Earth, as derived 
from the ECI position vector, rotated into the REN frame. 

double &PlatformRENRhoRDot The current REN R (Radial) velocity 
vector of the velocity of the platform with respect to the center of the Earth, as 
derived from the ECI velocity vector, rotated into the REN frame. 

double &PlatformRENRhoEDot The current REN E (East) velocity 
vector of the velocity of the platform with respect to the center of the Earth, as 
derived from the ECI velocity vector, rotated into the REN frame. 

double &PlatformRENRhoNDot The current REN N (North) velocity 
vector of the velocity of the platform with respect to the center of the Earth, as 
derived from the ECI velocity vector, rotated into the REN frame. 
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double &PlatformRENRhoRDotDot The current REN R acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations derived in the ECI frame 
and rotated into the REN frame. It is assumed that the aircraft itself is 
maintaining straight and level flight at constant velocity. 

double &PlatformRENRhoEDotDot The current REN E acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations derived in the ECI frame 
and rotated into the REN frame. It is assumed that the aircraft itself is 
maintaining straight and level flight at constant velocity. 

double &PlatformRENRhoNDotDot The current REN N acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations derived in the ECI frame 
and rotated into the REN frame. It is assumed that the aircraft itself is 
maintaining straight and level flight at constant velocity. 

double &ECItoRENMatrixll This an element (row 1, column 1) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrixl2 This an element (row 1, column 2) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrixl3 This an element (row 1, column 3) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrix21 This an element (row 2, column 1) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrix22 This an element (row 2, column 2) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrix23 This an element (row 2, column 3) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrix31 This an element (row 3, column 1) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 
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double &ECItoRENMatrix32 This an element (row 3, column 2) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrix33 This an element (row 3, column 3) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

ErrorStructure &ErrorList      This is the error-handling structure 
that is used as both an input (to see if errors have occurred) and an output (to list 
any errors occurring in this module). 

C.2.2 The TargetPlatform.h Header File 

♦ifndef TargetPlatformH 
#define TargetPlatformH 

TargetPlatform.cpp */ 
Captain David Vloedman */ 
January 13, 1998 */ 

*/ 
This set of modules supports the processor and are */ 
used to establish the platform's position, velocity, and*/ 
acceleration wrt the platform in the REN frame. The */ 
ECI to REN conversion matrix is also passed back to */ 
allow other conversions later. */ 

*/ 
Borland C++ Builder3 Standard version */ 
This compiler should be used to compile and link.      */ 

*/ 

/*********************************/ 

/* C++BUILDER-SPECIFIC LIBRARIES */ 
/A********************************/ 

# inclüde <vc1.h> 
♦pragma hdrstop 
♦pragma package(smart_init) 
/A********************************/ 

/* USER-BUILT LIBRARIES */ 
/*********************************, 

#include "LaserConstants.h" 
♦include "Aircraft.h" 
♦include "ErrorStructure.h" 
♦include "TargetPlatform.h" 
/•A*******************************/ 

/* C STANDARD LIBRARIES */ 

♦include <stdio.h> 
♦include <stdlib.h> 
♦include <string.h> 
♦include <iostream.h> 
♦include <conio.h> 
♦include <math.h> 
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/* MODULE NAME: 
/* AUTHOR: 
/* DATE CREATED: 
/* 
/* PURPOSE: 
/* 
/* 
/* 
/* 
/* 
/* COMPILER: 
/* 
/* 



/***********************       FUCTIONS *****************************/ 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

**************** 
FUNCTION NAME: 
AUTHOR: 
DATE CREATED: 

PURPOSE: 

INPUTS: 

*********************************************************** 

TargetPlatform 
Captain David Vloedman 
November 17, 1998 

position,velocity and acceleration in the REN frame of 
the Airborn laser platform. 

OUTPUTS: 

/ 
*/ 
*/ 
*/ 
*/ 

This function will take the position of the aircraft and*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/' 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

NAME: 

ABLPlatform 

JulianDate 

NAME: 
PlatformECIRhoX 

PlatformECIRhoY 

PlatformECIRhoZ 

PlatformECIRhoXDot 

PlatformECIRhoYDot 

PlatformECIRhoZDot 

PlatformECIRhoXDotDot 

PlatformECIRhoYDotDot 

PlatformECIRhoZDotDot 

PlatformRENRhoR 

PlatformRENRhoE 

PlatformRENRhoN 

PlatformRENRhoRDot 

PlatformRENRhoEDot 

PlatformRENRhoNDot 

PlatformRENRhoRDotDot 

DEFINITION: 
for the Satellite being studied 
Holds all information about ABL 
Platform position/disposition 
The time to which the position 
of sat should be propagated to 
DESCRIPTION: 
X magnitude in ECI frame at Jul 
date of X pos vector 
Y magnitude in ECI frame at Jul 
date of Y pos vector 
Z magnitude in ECI frame at Jul 
date of Z pos vector 
X magnitude in ECI frame at Jul 
date of X vel vector 
Y magnitude in ECI frame at Jul 
date of Y vel vector 
Z magnitude in ECI frame at Jul 
date of Z vel vector 
X magnitude in ECI frame at Jul 
date of X ace vector 
Y magnitude in ECI frame at Jul 
date of Y ace vector 
Z magnitude in ECI frame at Jul 
date of Z ace vector 
Radial component in Radial, East*/ 
North coordinate frame of the */ 
Rho vector descibed above in the*/ 
ECI frame */ 
East component in Radial, East */ 
North coordinate frame of the */ 
Rho vector descibed above in the*/ 
ECI frame */ 
North component in Radial, East */ 
North coordinate frame of the */ 
Rho vector descibed above in the*/ 
ECI frame */ 
Radial Velocity in Radial, East */ 
North coordinate frame of the */ 
Rho vector descibed above in the*/ 
ECI frame */ 
East velocity in Radial, East */ 
North coordinate frame of the */ 
Rho vector descibed above in the*/ 
ECI frame */ 
North velocity in Radial, East */ 
North coordinate frame of the */ 
Rho vector descibed above in the*/ 
ECI frame */ 
Radial accel. in Radial, East   */ 
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/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

PlatformRENRhoEDotDot 

PlatformRENRhoNDotDot 

ECItoRENMatrixXY 
ErrorList 

COMPILER:      Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

North coordinate frame of the */ 
Rho vector descibed above in the*/ 
ECI frame */ 
East accel. in Radial, East */ 
North coordinate frame of the */ 
Rho vector descibed above in the*/ 
ECI frame */ 
North accel. in Radial, East */ 
North coordinate frame of the */ 
Rho vector descibed above in the*/ 
ECI frame */ 
The ECI to REN conversion matrix*/ 
The Errors which have occurred  */ 

*/ 
*/ 
*/ 

/* */ 
/***************************************************************************•/ 

void TargetPlatformfstruct Aircraft &Platform, 
double ScThetaGInRad, 
double JulianDate, 
double &PlatformECIRhoX, 
double ScPlatformECIRhoY, 
double &PlatformECIRhoZ, 
double &PlatformECIRhoXDot, 
double &PlatformECIRhoYDot, 
double &PlatformECIRhoZDot, 
double ScPlatformECIRhoXDotDot, 
double &PlatformECIRhoYDotDot, 
double StPlatformECIRhoZDotDot, 
double &PlatformRENRhoR, 
double &PlatformRENRhoE, 
double &PlatformRENRhoN, 
double &PlatformRENRhoRDot, 
double ScPlatformRENRhoEDot, 
double SPlatformRENRhoNDot, 
double &PlatformRENRhoRDotDot, 
double &PlatformRENRhoEDotDot, 
double &PlatformRENRhoNDotDot, 
double ScECItoRENMatrixll, 
double &ECItoRENMatrixl2, 
double &ECItoRENMatrixl3, 
double &ECItoRENMatrix21, 
double &ECItoRENMatrix22, 
double 
double 
double 
double 

&ECItoRENMatrix23, 
&ECItoRENMatrix31, 
&ECItoRENMatrix32, 
&ECItoRENMatrix33, 

ErrorStructure   &ErrorList); 
#endif 
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C.3 The Target Laser Library 

The Target Laser Library houses all code that tranforms the lasers inputs, in terms 

of azimuth and acceleration, into a position, velocity and acceleration vector in the REN 

coordinate frame. TargetLaser, the module in this library responsible for accomplishing 

this task, can be run independently from the Processor using the Graphical Interface 

shown in Figure C.4. This interface is handled by the C++ Builder module, 

TargetLaserForm, the code for which is listed in Appendix E. 
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Figure C.4. GUI Used to Run and Test TargetLaser 

C.3.1 TargetLaser 

TargetLaser is the module responsible for finding the lasers turrets position, 

velocity, and acceleration in the REN frame. As such, it takes inputs in terms of azimuth 
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and acceleration, and converts to a unit position vector, a velocity vector, and an 

acceleration vector in the REN frame. 

Inputs 

double   AzimuthlnDegrees      The current azimuth of the laser turret in 
degrees. 

double  ElevationlnDegrees  The current elevation of the laser turret in 
degrees. 

double AzimuthDot  The current rate of change of the azimuth of the laser 
turret in degrees per second. 

double   ElevationDot   The current rate of change of the elevation of the 
laser turret in degrees per second. 

double   AzimuthDot Dot   The current acceleration of the azimuth of the 
laser turret in degrees per second. 

double  ElevatlonDotDot  The current acceleration of the elevation of the 
laser turret in degrees per second. 

Outputs 

double &LaserRENRhoRPtr The current REN R (Radial) unit position 
vector of the position of the laser with respect to the platform, as derived from the 
azimuth and elevation. 

double &LaserRENRhoEPtr The current REN E (East) unit position 
vector of the position of the laser with respect to the platform, as derived from the 
azimuth and elevation. 

double &LaserRENRhoNPtr The current REN N (North) unit position 
vector of the position of the laser with respect to the platform, as derived from the 
azimuth and elevation 

double &LaserRENRhoRDotPtr The current REN R (Radial) velocity 
vector of the velocity of the laser with respect to the platform, as derived from the 
azimuth, elevation and the rate of change of the azimuth and elevation. 
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double &LaserRENRhoEDotPtr The current REN E (East) velocity 
vector of the velocity of the laser with respect to the platform, as derived from the 
azimuth, elevation and the rate of change of the azimuth and elevation. 

double &LaserRENRhoNDotPtr The current REN N (North) velocity 
vector of the velocity of the laser with respect to the platform, as derived from the 
azimuth, elevation and the rate of change of the azimuth and elevation. 

double &LaserRENRhoRDotDotPtr The current REN R (Radial) 
acceleration vector of the acceleration of the laser with respect to the platform, as 
derived from the azimuth, elevation, the rate of change of the azimuth and 
elevation, and the acceleration of the azimuth and elevation. 

double    &LaserRENRhoEDotDotPtr The   current   REN   E   (East) 
acceleration vector of the acceleration of the laser with respect to the platform, as 
derived from the azimuth, elevation, the rate of change of the azimuth and 
elevation, and the acceleration of the azimuth and elevation. 

double &LaserRENRhoNDotDotPtr The current REN N (North) 
acceleration vector of the acceleration of the laser with respect to the platform, as 
derived from the azimuth, elevation, the rate of change of the azimuth and 
elevation, and the acceleration of the azimuth and elevation. 

ErrorStructure &ErrorLlst      This is the error-handling structure 
that is used as both an input (to see if errors have occurred) and an output (to list 
any errors occurring in this module). 

C.3.2 The TargetLaser.h Header File 

tifndef TargetLaserH 
♦define TargetLaserH 

/* MODULE NAME:    TargetLaser.cpp */ 
/* AUTHOR:        Captain David Vloedman */ 
/* DATE CREATED:   January 11,1999 */ 
/* */ 
/* PURPOSE:        This set of modules supports the processor and are */ 
/*                used to evaluate whether or not the satellite is ever  */ 
/* above the platform horizon. */ 
/* */ 
/* COMPILER:      Borland C++ Builder3 Standard version */ 
/* This compiler should be used to compile and link. */ 
/* */ 

/fr********************************/ 

/* C++BUILDER-SPECIFIC LIBRARIES */ 
/fr********************************/ 

#include <vcl.h> 
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♦pragma hdrstop 
♦pragma package(smart_init) 
/*********************************/ 

/* USER-BUILT LIBRARIES */ 
/*********************************/ 

♦include "LaserConstants.h" 
♦include "ErrorStructure.h" 
♦include "TargetLaser.h" 
/*********************************/ 

/* C STANDARD LIBRARIES */ 
/*********************************/ 

♦include <stdio.h> 
♦include <stdlib.h> 
♦include <string.h> 
♦include <iostream.h> 
♦include <conio.h> 
♦include <math.h> 

/****************************************************************************/ 
/*********************** FUCTIONS *****************************/ 
/****************************************************************************/ 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

*************** 

FUNCTION NAME 
AUTHOR: 
DATE CREATED: 

PURPOSE: 

INPUTS: 

************************************************************ 

OUTPUTS: 

:  TargetLaser 
Captain David Vloedman 
January 3, 1999 

This routine finds the 
laser turret given its 

NAME: 
Azimuth 

Elevation 

AzimuthDot 

AzimuthDot 

AzimuthDotDot 

AzimuthDotDot 

unit direction vector of the 
reported azimuth and elevation. 

NAME: 
LaserRENRhoR 

LaserRENRhoE 

LaserRENRhoN 

LaserRENRhoRDot 

/ 
/ 
/ 
/ 
/ 
/ 
/ 

*/ 
DEFINITION: */ 
This is the Azimuth (reported in*/ 
degrees east of north) of the */ 
laser turret. */ 
This is the Elevation (reported */ 
in degrees above horizon) of the*/ 
laser turret. */ 
This is the Azimuth rate of */ 
change of the laser turret. */ 
This is the Elevation rate of */ 
change of the laser turret. */ 
This is the Azimuth acceleration*/ 
of the laser turret. 

This is the Elevation accel. 
of the laser turret. 

*/ 
*/ 
*/ 
*/ 

DESCRIPTION: */ 
The unit Radial component of the*/ 
position vector given in the */ 
REN (Radial, East, North) coord */ 
frame which is centered on the */ 
platform. */ 
The unit East component of the*/ 
position vector given in the   */ 
REN (Radial, East, North) coord */ 
frame which is centered on the  */ 
platform. */ 
The unit North component of the*/ 
position vector given in the   */ 
REN (Radial, East, North) coord */ 
frame which is centered on the  */ 
platform. */ 
The unit Radial velocity of the */ 
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position vector given in the */ 
REN (Radial, East, North) coord */ 
frame which is centered on the */ 
platform. */ 
The unit East velocity of the */ 
position vector given in the */ 
REN (Radial, East,. North) coord */ 
frame which is centered on the */ 
platform. */ 
The unit North velocity of the */ 
position vector given in the */ 
REN (Radial, East, North) coord */ 
frame which is centered on the */ 
platform. */ 
The unit Radial accel. of the */ 
position vector given in the */ 
REN (Radial, East, North) coord */ 
frame which is centered on the */ 
platform. */ 
The unit East accel. of the */ 
position vector given in the */ 
REN (Radial, East, North) coord */ 
frame which is centered on the */ 
platform. */ 
The unit North accel. of the */ 
position vector given in the */ 
REN (Radial, East, North) coord */ 
frame which is centered on the */ 
platform. */ 
The Errors which have occurred */ 

*/ 
COMPILER:      Borland C++ Builder3 Standard version */ 

be used to compile and link. */ 
/* */ 

void TargetLaser(double AzimuthlnDegrees, 
double ElevationlnDegrees, 
double AzimuthDot, 
double ElevationDot, 
double AzimuthDotDot, 
double ElevationDotDot, 
double ScLaserRENRhoRPtr, 
double ScLaserRENRhoEPtr, 
double &LaserRENRhoNPtr, 
double &LaserRENRhoRDotPtr, 
double ScLaserRENRhoEDotPtr, 
double &LaserRENRhoNDotPtr, 
double ScLaserRENRhoRDotDotPtr, 
double &LaserRENRhoEDotDotPtr, 
double &LaserRENRhoNDotDotPtr, 
ErrorStructure  &ErrorList); 

#endif 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

LaserRENRhoEDot 

LaserRENRhoNDot 

LaserRENRhoRDotDot 

Las erRENRhoEDo tDo t 

Las erRENRhoNDo tDo t 

ErrorList 

Borland C++ Builder3 
This compiler should 
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C.4 The Target Satellite Library 

The Target Satellite Library houses the code that locates the satellite and its 

parameters of motion with the help of an interface to SGP4. The module responsible for 

accomplishing this task is TargetSatellite. this module can be run independently, if 

desired, using the GUI shown in Figure C.5. This GUI is run using the C++ Builder 

module, TargetsatelliteForm, the listing for which can be seen in Appendix E. 

C -J'iJJPADaiä/TLEFikfi txl '" "' §J|l^fi*^^'|o 

lli-i* ■..<?,:■ AL::..: >l 

I No Enorsft^C ilf^^iä^^lO 
H * * 5* +  *tY4 " *^ ***** ; 

F/gure C.5. Graphical Interface for TargetSatellite 
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C.4.1 TargetSatellite 

The Target Satellite module must handle three functions. First, it must interface 

with SGP4 (via the SGP4 Support modules) and obtain a satellite's position and velocity 

as of the Julian Date given, in the ECI frame.   Second, based on the position of the 

satellite in the ECI frame, the acceleration of the satellite in the ECI frame must also be 

calculated.     Third,  TargetSatellite  must  take  the  ECI-to-REN  conversion  matrix 

formulated   by   TargetPlatform,   and   convert   the   satellite   position,   velocity   and 

accelerations in the ECI frame to the appropriate vectors in the REN frame. 

Inputs 

struct Satellite &Sat The structure holding all of the satellite 
ephemeris information. The Type "Satellite" is defined in Satellite.h. 

double ThetaGInRad This is the angle at which the Earth's Greenwich 
Meridian is currently at with respect to the ECI frame, where the referent angle is 
the Vernal Equinox. This angle should be in radians. 

double  fcECItoRENMatrixll     This an element (row 1, column 1) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 
double  &ECItoRENMatrixl2     This an element (row 1, column 2) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 
double  &ECItoRENMatrixl3     This an element (row 1, column 3) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 
double  &ECItoRENMatrix21     This an element (row 2, column 1) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 
double  &ECItoRENMatrix22     This an element (row 2, column 2) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 
double  &ECItoRENMatrix23     This an element (row 2, column 3) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 
double  &ECItoRENMatrix31     This an element (row 3, column 1) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 
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double &ECItoRENMatrix32 This an element (row 3, column 2) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrix33 This an element (row 3, column 3) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

Outputs 

double &SatECIRhoX The current ECI X position vector of the position of 
the satellite with respect to the center of the Earth, as derived from SGP4. 

double &SatECIRhoY The current ECI Y position vector of the position of 
the satellite with respect to the center of the Earth, as derived from SGP4. 

double &SatECIRhoZ The current ECI Z position vector of the position of 
the satellite with respect to the center of the Earth, as derived from SGP4. 

double &SatECIRhoXDot The current ECI X velocity vector of the 
velocity of the satellite with respect to the center of the Earth, as derived from 
SGP4. 

double &SatECIRhoYDot The current ECI Y velocity vector of the 
velocity of the satellite with respect to the center of the Earth, as derived from 
SGP4. 

double &SatECIRhoZDot The current ECI Z velocity vector of the 
velocity of the satellite with respect to the center of the Earth, as derived from 
SGP4. 

double «eSatECIRhoXDotDot The current ECI X acceleration vector of 
the acceleration of the satellite with respect to the center of the Earth, as derived 
from the position of the satellite found by SGP4. 

double &SatECIRhoYDotDot The current ECI Y acceleration vector of 
the acceleration of the satellite with respect to the center of the Earth, as derived 
from the position of the satellite found by SGP4. 

double &SatECIRhoZDotDot The current ECI Z acceleration vector of 
the acceleration of the satellite with respect to the center of the Earth, as derived 
from the position of the satellite found by SGP4. 
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double &SatRENRhoR The current REN R (Radial) position vector of the 
position of the satellite with respect to the center of the Earth, as derived from the 
ECI position vector, found by SGP4, rotated into the REN frame. 

double &SatRENRhoE The current REN E (East) position vector of the 
position of the satellite with respect to the center of the Earth, as derived from the 
ECI position vector, found by SGP4, rotated into the REN frame. 

double &SatRENRhoN The current REN N (North) position vector of the 
position of the satellite with respect to the center of the Earth, as derived from the 
ECI position vector, found by SGP4, rotated into the REN frame. 

double &SatRENRhoRDot The current REN R (Radial) velocity vector of 
the velocity of the satellite with respect to the center of the Earth, as derived from 
the ECI velocity vector, found by SGP4, rotated into the REN frame. 

double &SatRENRhoEDot The current REN E (East) velocity vector of the 
velocity of the satellite with respect to the center of the Earth, as derived from the 
ECI velocity vector, found by SGP4, rotated into the REN frame. 

double &SatRENRhoNDot The current REN N (North) velocity vector of 
the velocity of the satellite with respect to the center of the Earth, as derived from 
the ECI velocity vector, found by SGP4, rotated into the REN frame. 

double  &SatRENRhoRDotDot     The current REN R acceleration vector of 
the acceleration of the satellite with respect to the center of the Earth, as derived 
from the acceleration in the ECI frame. 

double  &SatRENRhoEDotDot     The current REN E acceleration vector of 
the acceleration of the satellite with respect to the center of the Earth, as derived 
from the acceleration in the ECI frame. 

double  &SatRENRhoNDotDot     The current REN N acceleration vector of 
the acceleration of the satellite with respect to the center of the Earth, as derived 
from the acceleration in the ECI frame. 

ErrorStructure &ErrorList      This is the error-handling structure 
that is used as both an input (to see if errors have occurred) and an output (to list 
any errors occurring in this module). 
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/* MODULE NAME: 
/* AUTHOR: 
/* DATE CREATED: 
/* 
/* PURPOSE: 
/* 
/* 
/* 
/* COMPILER: 
/* 

C.4.2 The TargetSatellite.h Header File 

#ifndef TargetSatelliteH 
♦define TargetSatelliteH 
/*********************************•******************************************/ 

TargetSatellite.cpp */ 
Captain David Vloedman */ 
November 17, 1998 */ 

*/ 
This set of modules supports the preprocessor and are. */ 
used to establish the satellites position, velocity, and*/ 
acceleration wrt the platform in the REN frame.        */ 

*/ 
Borland C++ Builder3 Standard version */ 
This compiler should be used to compile and link.      */ 

/* */ 
/****************************************************************************/ 
/a********************************/ 

/* C++BUILDER-SPECIFIC LIBRARIES */ 
/*********************************/ 

♦include <vcl.h> 
♦pragma hdrstop 
♦pragma package(smart_ini t) 
/•a*******************************/ 

/* USER-BUILT LIBRARIES */ 
/*********************************/ 

♦include "TimeModules.h" 
♦include "TLEInput.h" 
♦include "LaserConstants.h" 
♦include "Satellite.h" 
♦include "Aircraft.h" 
♦include "ErrorStructure.h" 
♦include "EvaluateEphemerisModules.h" 
♦include "SGP4SupportModules.h" 
♦include "TargetSatellite.h" 
/A********************************/ 

/* C STANDARD LIBRARIES */ 
/•a*******************************/ 

♦include <stdio.h> 
♦include <stdlib.h> 
♦include <string.h> 
♦include <iostream.h> 
♦include <conio.h> 
♦include <math.h> 

/***********************      FUCTIONS        *****************************/ 

/*  FUNCTION NAME:  TargetSatellite */ 
/* AUTHOR:        Captain David Vloedman */ 
/*  DATE CREATED:   November 17, 1998 */ 

*/ 
/* PURPOSE:       This function will take the position of the aircraft and*/ 
/* the orbital elements of the satellite and calculate    */ 
/* the azimuth and elevation of the satellite from the    */ 
/* Airborn laser platform.                              */ 
/* */ 
/* INPUTS:          NAME:                     DEFINITION:                       */ 
/* Sat                   Holds all ephemeris information */ 
/* for the Satellite being studied */ 
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/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

OUTPUTS: 

JulianDate 

ECItoRENMatrix(RowCol) 

NAME: 
SatECIRhoX 

SatECIRhoY 

SatECIRhoZ 

SatECIRhoXDot 

SatECIRhoYDot 

SatECIRhoZDot 

SatECIRhoXDotDot 

SatECIRhoYDotDot 

SatECIRhoZDotDot 

SatRENRhoR 

SatRENRhoE 

SatRENRhoN 

SatRENRhoRDot 

SatRENRhoEDot 

SatRENRhoNDot 

SatRENRhoRDo tDo t 

SatRENRhoEDotDot 

The time to which the position */ 
of sat should be propagated to */ 
The ECI to REN conversion matrix*/ 
THIS IS USED TO CONVERT FROM ECI*/ 
COORDINATE FRAME TO THE RADIAL, */ 
EAST, NORTH (REN) FRAME. */ 
DESCRIPTION: */ 
X magnitude in ECI frame at Jul */ 
date of sat radial vector - the */ 
platform radial position vector */ 
Y magnitude in ECI frame at Jul */ 
date of sat radial vector - the */ 
platform radial position vector */ 
Z magnitude in ECI frame at Jul */ 
date of sat radial vector - the */ 
platform radial position vector */ 
X velocity in ECI frame at Jul */ 
date of sat radial vector - vel */ 
in X axis direction. */ 
Y velocity in ECI frame at Jul */ 
date of sat radial vector - vel */ 
in Y axis direction. */ 
Z velocity in ECI frame at Jul */ 
date of sat radial vector - vel */ 
in Z axis direction. */ 
X accel. in ECI frame at Jul */ 
date of sat radial vector - ace.*/ 
in X axis direction.           */ 
Y accel. in ECI frame at Jul */ 
date of sat radial vector - ace.*/ 
in Y axis direction. */ 
Z accel. in ECI frame at Jul */ 
date of sat radial vector - ace.*/ 
in Z axis direction. */ 
The Radial Component of the */ 
position vector of the satellite*/ 
wrt Earth center in the REN */ 
coordinate frame. */ 
The East Component of the */ 
position vector of the satellite*/ 
wrt Earth center in the REN */ 
coordinate frame. */ 
The North Component of the */ 
position vector of the satellite*/ 
wrt Earth center in the REN */ 
coordinate frame. */ 
The Radial Component of the */ 
velocity vector of the satellite*/ 
wrt Earth center in the REN */ 
coordinate frame. */ 
The East Component of the */ 
velocity vector of the satellite*/ 
wrt Earth center in the REN */ 
coordinate frame. */ 
The North Component of the */ 
velocity vector of the satellite*/ 
wrt Earth center in the REN */ 
coordinate frame. */ 
The Radial Component of the */ 
accel vector of the satellite */ 
wrt Earth center in the REN */ 
coordinate frame. */ 
The East Component of the      */ 
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/* accel vector of the satellite  */ 
/* wrt Earth center in the REN    */ 
/* coordinate frame. */ 
/* SatRENRhoNDotDot       The North Component of the     */ 
/* accel vector of the satellite  */ 
/* wrt Earth center in the REN    */ 
/* coordinate frame. */ 
/* ErrorList The Errors which have occurred  */ 
/* */ 
/*  COMPILER:      Borland C++ Builder3 Standard version */ 
/* This compiler should be used to compile and link.      */ 
/* */ 

void TargetSatellite(struct Satellite &Sat, 
double JulianDate, 
double ECItoRENMatrixll, 
double ECItoRENMatrixl2, 
double ECItoRENMatrixl3, 
double ECItoRENMatrix21, 
double ECItoRENMatrix22, 
double ECItoRENMatrix23, 
double ECItoRENMatrix31, 
double ECItoRENMatrix32, 
double ECItoRENMatrix33, 
double ScSatECIRhoX, 
double fcSatECIRhoY, 
double ScSatECIRhoZ, 
double &SatECIRhoXDot, 
double &SatECIRhoYDot, 
double &SatECIRhoZDot, 
double &SatECIRhoXDotDot, 
double &SatECIRhoYDotDot, 
double &SatECIRhoZDotDot, 
double ScSatRENRhoR, 
double ScSatRENRhoE, 
double &SatRENRhoN, 
double &SatRENRhoRDot, 
double &SatRENRhoEDot, 
double ScSatRENRhoNDot, 
double ScSatRENRhoRDotDot, 
double &SatRENRhoEDotDot, 
double &SatRENRhoNDotDot, 
ErrorStructure  &ErrorList); 

#endif 
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C.5 The Find Displacement Angle Modules Library 

The modules of the Find Displacement Angle Modules Library are responsible for 

finding the angle that separates the laser turret unit direction position vector and the 

satellite position vector. This includes finding the separation angle of these two vectors 

(as seen from the platform), finding the rate of change of this separation angle, and 

finding the acceleration of this angle. This library also finds the error angle contributed 

by position errors in the forecast. The three modules contained in this library are 

FindDisplacementAngles, FindErrorAngle, and FindSeparationAngle. These three 

modules can be tested using the GUI seen in Figure C.6. 

[•• BdU«»*^.;:fi'ra    j^   ^li!|pif|4dij^äjr 

Figure C.6. GUI Used to Run and Test FindDisplacementAngles Module 
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C.5.1 FindDisplacement Angles 

FindDispacementAngles is the primary Module in this library.    It calls bot 

FindErrorAngle and FindSeparationAngle.   It also calls each of the libraries already 

discussed. This module first locates the laser turret, the platform, and the satellite in REN 

space (using the libraries above).   It then subtracts the platform position, velocity and 

acceleration from the satellite's position, velocity and acceleration to locate the platform 

at the origin of the REN coordinate frame with respect to the satellite.  This sets up the 

laser turret motion vectors and the satellite motion vectors in the REN frame with respect 

to the platform, and allows the separation angle to be found more easily.   A call to 

FindSeparationAngle finds the separation angle, the rate of change of the angle and the 

acceleration of the angle betweent the laser unit position vector and the satellite position 

vector. A call is also made to FindErrorAngle to find the half-error angle resulting from 

position uncertainties in the satellite, platform, and missile. 

Inputs 

struct Satellite &Sat The structure holding all of the satellite 
ephemeris information. The Type "Satellite" is defined in Satellite.h. 

struct     Aircraft   &ABLPlatform ABLPlatform is a structure of type 
"Aircraft" that holds all of the information about the position of the aircraft at the 
time of execution of 
the Preprocessor. 

double ThetaGInRad This is the angle at which the Earth's Greenwich 
Meridian is currently at with respect to the ECI frame, where the referent angle is 
the Vernal Equinox. This angle should be in radians. 

double JulianDate This is the modified Julian Date (The Julian Date - 
2440000) that needs to be propagated to. This is the actual time at which the user 
wishes to find the position of the satellite. 

double AzimuthlnDegrees The current azimuth of the laser turret in 
degrees. 
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double ElevationlnDegrees The current elevation of the laser turret in 
degrees. 

double AzimuthDot The current rate of change of the azimuth of the laser 
turret in degrees per second. 

double ElevationDot The current rate of change of the elevation of the 
laser turret in degrees per second. 

double AzimuthDot Dot The current acceleration of the azimuth of the 
laser turret in degrees per second. 

double ElevationDot Dot The current acceleration of the elevation of the 
laser turret in degrees per second. 

double Sat Pos it ionError InMeters The radius of the "sphere" inside 
which the satellite is known to reside (in meters) throughout the forecast period 
(around 10 to 30 seconds). For SGP4, this may be as high as around 10 km 
(10000 m). 

double PlatformPositionErrorInMeters The radius of the "sphere" 
inside which the platform is known to reside (in meters) throughout the forecast 
period (around 10 to 30 seconds). For a 747 on autopilot with GPS tracking, a 
rough estimate might be 50 meters. 

double MissilePositionErrorlnMeters The radius of the "sphere" 
inside which the missile is known to reside (in meters) throughout the forecast 
period (around 10 to 30 seconds). This may just be an educated guess. It is 
difficult to now the behavior of the missile based on initial conditions, and this 
parameter will have to be given some thought. 

double RangeToMissilelnKilometers The range from the platform to 
the missile. 

double OtherErrorAnglelnDeg This is a "catch-all" parameter, to be 
used if, in the future, there are other error angles that crop up that have not already 
been accounted for. 

Outputs 

double &PlatformSatRENRhoR The current REN R (Radial) position 
vector of the position of the satellite with respect to the platform, as derived from 
the ECI position vector, found by SGP4, rotated into the REN frame, and 
subtracted by the platform REN position vector. 
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double &PlatformSatRENRhoE The current REN E (East) position 
vector of the position of the satellite with respect to the platform, as derived from 
the ECI position vector, found by SGP4, rotated into the REN frame, and 
subtracted by the platform REN position vector. 

double &PlatformSatRENRhoN The current REN N (North) position 
vector of the position of the satellite with respect to the platform, as derived from 
the ECI position vector, found by SGP4, rotated into the REN frame, and 
subtracted bythe platform REN position vector. 

double &PlatformSatRENRhoRDot The current REN R (Radial) 
velocity vector of the velocity of the satellite with respect to the platform, as 
derived from the ECI velocity vector, found by SGP4, rotated into the REN frame 
and subtracted by the platform REN velocity vector 

double fcPlatf ormSatRENRhoEDot The current REN E (East) velocity 
velocity vector of the velocity of the satellite with respect to the platform, as 
derived from the ECI velocity vector, found by SGP4, rotated into the REN frame 
and subtracted by the platform REN velocity vector 

double &PlatformSatRENRhoNDot The current REN N (North) 
velocity vector of the velocity of the satellite with respect to the platform, as 
derived from the ECI velocity vector, found by SGP4, rotated into the REN frame 
and subtracted by the platform REN velocity vector 

double     &PlatformSatRENRhoRDotDot The    current    REN    R 
acceleration vector of the acceleration of the satellite with respect to the platform, 
as derived from the acceleration in the ECI frame, rotated into the REN frame, 
subtracted by the platform REN acceleration 

double     «cPlatformSatRENRhoEDotDot The    current    REN    E 
acceleration vector of the acceleration of the satellite with respect to the platform, 
as derived from the acceleration in the ECI frame, rotated into the REN frame, 
subtracted by the platform REN acceleration 

double     &PlatformSatRENRhoNDotDot The    current   REN    N 
acceleration vector of the acceleration of the satellite with respect to the platform, 
as derived from the acceleration in the ECI frame, rotated into the REN frame, 
subtracted by the platform REN acceleration 

double &LaserRENRhoR The current REN R (Radial) unit position vector 
of the position of the laser with respect to the platform, as derived from the 
azimuth and elevation. 
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double &LaserRENRhoE The current REN E (East) unit position vector of 
the position of the laser with respect to the platform, as derived from the azimuth 
and elevation. 

double &LaserRENRhoN The current REN N (North) unit position vector 
of the position of the laser with respect to the platform, as derived from the 
azimuth and elevation 

double &LaserRENRhoRDot The current REN R (Radial) velocity vector 
of the velocity of the laser with respect to the platform, as derived from the 
azimuth, elevation and the rate of change of the azimuth and elevation. 

double &LaserRENRhoEDot The current REN E (East) velocity vector of 
the velocity of the laser with respect to the platform, as derived from the azimuth, 
elevation and the rate of change of the azimuth and elevation. 

double &LaserRENRhoNDot The current REN N (North) velocity vector 
of the velocity of the laser with respect to the platform, as derived from the 
azimuth, elevation and the rate of change of the azimuth and elevation. 

double     &LaserRENRhoRDotDot The   current   REN   R   (Radial) 
acceleration vector of the acceleration of the laser with respect to the platform, as 
derived from the azimuth, elevation, the rate of change of the azimuth and 
elevation, and the acceleration of the azimuth and elevation. 

double &LaserRENRhoEDotDot The current REN E (East) acceleration 
vector of the acceleration of the laser with respect to the platform, as derived from 
the azimuth, elevation, the rate of change of the azimuth and elevation, and the 
acceleration of the azimuth and elevation. 

double &LaserRENRhoNDotDot The current REN N (North) acceleration 
vector of the acceleration of the laser with respect to the platform, as derived from 
the azimuth, elevation, the rate of change of the azimuth and elevation, and the 
acceleration of the azimuth and elevation. 

double &RangeToSatInKilometers Range to the satellite from the 
platform in kilometers. 

double &ErrorAngleInRadians The final error angle (in radians) 
resulting from the position errors given previously. 

double &SeparationAngle The separation angle between the laser turret 
unit position vector and the satellite position vector in the REN frame. 

double &SepAngleDot The rate of change of the separation angle in radians 
per second. 
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double   &SepAngleDotDot   The acceleration of the separation angle in 
radians per second squared. 

ErrorStructure fcErrorList      This is the error-handling structure 
that is used as both an input (to see if errors have occurred) and an output (to list 
any errors occurring in this module). 

C.5.2 FindErrorAngle 

The module, FindErrorAngle is the module responsible for taking the position 

uncertainty errors for the platform, missile, and satellite, along with the ranges to the 

missile and satellite, and finding the error angle imposed by each uncertainty.   It then 

takes the sum of the squares of each of these error angles to find the resulting overall 

error angle. 

Inputs 

double &RangeToSatInKilometers Range to the satellite from the 
platform in kilometers. 

double SatPositionErrorInMeters The radius of the "sphere" inside 
which the satellite is known to reside (in meters) throughout the forecast period 
(around 10 to 30 seconds). For SGP4, this may be as high as around 10 km 
(10000 m). 

double PlatformPositionErrorInMeters The radius of the "sphere" 
inside which the platform is known to reside (in meters) throughout the forecast 
period (around 10 to 30 seconds). For a 747 on autopilot with GPS tracking, a 
rough estimate might be 50 meters. 

double MissllePositlonErrorlnMeters The radius of the "sphere" 
inside which the missile is known to reside (in meters) throughout the forecast 
period (around 10 to 30 seconds). This may just be an educated guess. It is 
difficult to now the behavior of the missile based on initial conditions, and this 
parameter will have to be given some thought. 

double RangeToMissllelnKilometers The range from the platform to 
the missile. 
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\  ■ 

\ 
double OtherErrorAnglelnDeg This is a "catch-all" parameter, to be 
used if, in the future, there are other error angles that crop up that have not already 
been accounted for. 

Outputs 

double &ErrorAngleInRadians The final error angle (in radians) 
resulting from the position errors given previously. 

ErrorStructure &ErrorList This is the error-handling structure that 
is used as both an input (to see if errors have occurred) and an output (to list any 
errors occurring in this module). 

C.5.3 FindSeparationAngle 

FindSeparationAngle is the module responsible for actually calculating the angle 

between the unit position vector for the laser turret and the position vector of the satellite 

(from the platform) in the REN frame. It is also responsible for finding the rate of change 

and the acceleration of the change of this separation angle. 

Inputs 

double LaserRENRhoR The current REN R (Radial) unit position vector 
of the position of the laser with respect to the platform, as derived from the 
azimuth and elevation. 

double LaserRENRhoE The current REN E (East) unit position vector of 
the position of the laser with respect to the platform, as derived from the azimuth 
and elevation. 

double LaserRENRhoN The current REN N (North) unit position vector of 
the position of the laser with respect to the platform, as derived from the azimuth 
and elevation 

double LaserRENRhoRDot The current REN R (Radial) velocity vector 
of the velocity of the laser with respect to the platform, as derived from the 
azimuth, elevation and the rate of change of the azimuth and elevation. 

double LaserRENRhoEDot The current REN E (East) velocity vector of 
the velocity of the laser with respect to the platform, as derived from the azimuth, 
elevation and the rate of change of the azimuth and elevation. 
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double LaserRENRhoNDot The current REN N (North) velocity vector of 
the velocity of the laser with respect to the platform, as derived from the azimuth, 
elevation and the rate of change of the azimuth and elevation. 

double LaserRENRhoRDotDot The current REN R (Radial) acceleration 
vector of the acceleration of the laser with respect to the platform, as derived from 
the azimuth, elevation, the rate of change of the azimuth and elevation, and the 
acceleration of the azimuth and elevation. 

double LaserRENRhoEDotDot The current REN E (East) acceleration 
vector of the acceleration of the laser with respect to the platform, as derived from 
the azimuth, elevation, the rate of change of the azimuth and elevation, and the 
acceleration of the azimuth and elevation. 

double LaserRENRhoNDotDot The current REN N (North) acceleration 
vector of the acceleration of the laser with respect to the platform, as derived from 
the azimuth, elevation, the rate of change of the azimuth and elevation, and the 
acceleration of the azimuth and elevation. 

double SatRENRhoR The current REN R (Radial) position vector of the 
position of the satellite with respect to the platform, as derived from the ECI 
position vector, found by SGP4, rotated into the REN frame, and subtracted by 
the platform REN position vector. 

double SatRENRhoE The current REN E (East) position vector of the 
position of the satellite with respect to the platform, as derived from the ECI 
position vector, found by SGP4, rotated into the REN frame, and subtracted by 
the platform REN position vector. 

double SatRENRhoN The current REN N (North) position vector of the 
position of the satellite with respect to the platform, as derived from the ECI 
position vector, found by SGP4, rotated into the REN frame, and subtracted bythe 
platform REN position vector. 

double SatRENRhoRDot The current REN R (Radial) velocity vector of 
the velocity of the satellite with respect to the platform, as derived from the ECI 
velocity vector, found by SGP4, rotated into the REN frame and subtracted by the 
platform REN velocity vector 

double SatRENRhoEDot The current REN E (East) velocity velocity 
vector of the velocity of the satellite with respect to the platform, as derived from 
the ECI velocity vector, found by SGP4, rotated into the REN frame and 
subtracted by the platform REN velocity vector 

double SatRENRhoNDot The current REN N (North) velocity vector of 
the velocity of the satellite with respect to the platform, as derived from the ECI 
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velocity vector, found by SGP4, rotated into the REN frame and subtracted by the 
platform REN velocity vector 

double SatRENRhoRDotDot The current REN R acceleration vector of 
the acceleration of the satellite with respect to the platform, as derived from the 
acceleration in the ECI frame, rotated into the REN frame, subtracted by the 
platform REN acceleration 

double SatRENRhoEDotDot The current REN E acceleration vector of 
the acceleration of the satellite with respect to the platform, as derived from the 
acceleration in the ECI frame, rotated into the REN frame, subtracted by the 
platform REN acceleration 

double SatRENRhoNDotDot The current REN N acceleration vector of 
the acceleration of the satellite with respect to the platform, as derived from the 
acceleration in the ECI frame, rotated into the REN frame, subtracted by the 
platform REN acceleration 

Outputs 

double  &SeparatlonAngle  The separation angle between the laser turret 
unit position vector and the satellite position vector in the REN frame. 

double &SepAngleDot The rate of change of the separation angle in radians 
per second. 

double   &SepAngleDotDot   The acceleration of the separation angle in 
radians per second squared. 

ErrorStructure &ErrorList      This is the error-handling structure 
that is used as both an input (to see if errors have occurred) and an output (to list 
any errors occurring in this module). 
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/* MODULE NAME: 
/* AUTHOR: 
/* DATE CREATED 
/* 
/* PURPOSE: 
/* 
/* 
/* 
/* 
/* COMPILER: 
/* 

C.5.4 The FindDisplacementAngleModules.h Header File 

#ifndef FindDisplacementAngleModulesH 
♦define FindDisplacementAngleModulesH 

FindDisplacementAngleModules.h */ 
Captain David Vloedman */ 
3 January, 1999 */ 

*/ 
This set of modules supports the Main Processor and are */ 
used to evaluate the error angle and the displacement */ 
angle between the laser position vector in the REN frame*/ 
and the satellite position vector in the same frame.    */ 

*/ 
Borland C++ Builder3 Standard version */ 
This compiler should be used to compile and link.      */ 

/* */ 

/••♦••a***************************/ 

/* C++BUILDER-SPECIFIC LIBRARIES */ 
/•a*******************************/ 

tinelüde <vcl.h> 
♦pragma hdrstop 
♦pragma package(smart_init) 
/•a*******************************/ 

/* USER-BUILT LIBRARIES */ 
/•••A*****************************/ 

♦include "TimeModules.h" 
♦include "TLEInput.h" 
♦include "LaserConstants.h" 
♦include "Satellite.h" 
♦include "Aircraft.h" 
♦include "ErrorStructure.h" 
♦include "EvaluateEphemerisModules.h" 
♦include "SGP4SupportModules.h" 
♦include "TargetSatellite.h" 
♦include "TargetPlatform.h" 
♦include "TargetLaser.h" 
/•A*******************************/ 

/* C STANDARD LIBRARIES */ 
/*********************************/ 

♦include <stdio.h> 
♦include <stdlib.h> 
♦include <string.h> 
♦include <iostream.h> 
♦include <conio.h> 
♦include <math.h> 

/***********************      FUCTIONS        *****************************/ 

FindDisplacementAngles */ 
Captain David Vloedman */ 
January 3, 1999 */ 

*/ 
This function will take satellite and platform data and */ 
willuse it to find the error angle and the displacement */ 
angle between the laser position vector in the REN frame*/ 
and the satellite position vector in the same frame.    */ 
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/* AUTHOR: 
/* DATE CREATED: 
/* 
/* PURPOSE: 
/* 
/* 
/* 



/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
•/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

INPUTS: 

OUTPUTS: 

NAME: 
Sat 

ABLPlatform 

JulianDate 

ThetaGInRadians 

LazerAzimuthlnDegrees 

LazerAzimuthDot 

LazerAzimuthDotDot 

LazerElevationDot 

LazerElevationDotDot 

*/ 
DEFINITION: */ 
Holds all ephemeris information */ 
for the Satellite being studied */ 
Holds all information about ABL */ 
Platform position/disposition */ 
The time to which the position */ 
of sat should be propagated to */ 
The angle between the Greenwich */ 
Meridian and the Vernal Equinox */ 
at JulianDate. */ 
Lazer Azimuth at Laze Start time*/ 
in Degrees _   */ 
The rate of change of the Az */ 
in Degrees/Sec. */ 
The rate of change of the rate */ 
of change of the Azimuth (Accel)*/ 
in Degrees/SecA2 */ 

LazerElevationlnDegrees Lazer Elevation at Laze Start  */ 
in Degrees */ 
The rate of change of the El */ 
in Degrees/Sec. */ 
The rate of change of the rate */ 
of change of the Elevat. (Accel)*/ 
in Degrees/Sec~2 */ 

SatPositionErrorlnMeters Holds the radius of the error  */ 
spheroid that describes the */ 
area in which the satellite is */ 
known to exist (in meters). */ 
.Holds the radius of the error */ 
spheroid that describes the */ 
area in which the platform is */ 
known to exist (in meters). */ 
Holds the radius of the error */ 
spheroid that describes the */ 
area in which the missile is */ 
known to exist (in meters). */ 
The Range to the missile (km) */ 
Holds any other error angles */ 
(in degrees) that may be a */ 
significant source of error. */ 
This should usually be set to */ 
zero (0.0) float. */ 
DESCRIPTION: */ 
The Radial Component of the */ 
position vector of the satellite*/ 
wrt the platform in the REN */ 
coordinate frame. */ 
The East Component of the */ 
position vector of the satellite*/ 
wrt the platform in the REN */ 
coordinate frame. */ 
The North Component of the */ 
position vector of the satellite*/ 
wrt the platform in the REN */ 
coordinate frame. */ 
The Radial Component of the */ 
velocity vector of the satellite*/ 
wrt the platform in the REN */ 
coordinate frame. */ 
The East Component of the */ 
velocity vector of the satellite*/ 
wrt the platform in the REN    */ 

PlatformPositionError. 

MissilePositionError. 

RangeToMissilelnKilo. 
OtherErrorAnglesInDeg 

NAME: 
PlatformSatRENRhoR 

PlatformSatRENRhoE 

PlatformSatRENRhoN 

PlatformSatRENRhoRDot 

PlatformSatRENRhoEDot 
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PlatformSatRENRhoNDot 
coordinate frame. */ 
The North Component of the     */ 
velocity vector of the satellite*/ 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/*  COMPILER: 
/* 
/* */ 
/************************•***************************************************, 

void FindDisplacementAngles(struct Aircraft &Platform, 

wrt the platform in the REN */ 
coordinate frame. */ 

PlatformSatRENRhoRDotDot The Radial Component of the   */ 
accel vector of the satellite */ 
wrt the platform in the REN */ 
coordinate frame. */ 

PlatformSatRENRhoEDotDot The East Component of the     */ 
accel vector of the satellite */ 
wrt the platform in the REN */ 
coordinate frame. */ 

PlatformSatRENRhoNDotDot The North Component of the     */ 
accel vector of the satellite */ 
wrt the platform in the REN */ 
coordinate frame. */ 
The Radial unit direction of the*/ 
lazer beam trajectory in the REN*/ 
frame. */ 
The East unit direction of the */ 
lazer beam trajectory in the REN*/ 
frame. */ 
The North unit direction of the */ 
lazer beam trajectory in the REN*/ 
frame. */' 
The Radial unit velocity of the */ 
lazer beam trajectory in the REN*/ 
frame in unit dirXradians/sec */ 
The East unit velocity of the */ 
lazer beam trajectory in the REN*/ 
frame in unit dirXradians/sec */ 
The North unit velocity of the */ 
lazer beam trajectory in the REN*/ 
frame in unit dirXradians/sec */ 
The Radial unit accel. of the */ 
lazer beam trajectory in the REN*/ 
frame in unit dirXradians/secA2 */ 
The East unit accel. of the */ 
lazer beam trajectory in the REN*/ 
frame in unit dirXradians/secA2 */ 
The North unit accel. of the */ 
lazer beam trajectory in the REN*/ 
frame in unit dirXradians/secA2 */ 
Holds the range of the aircraft */ 
to the satellite in kilometers. */ 
The total error angle in radians*/ 
The separation (in radians) of */ 
the LaserRENRho and */ 
PlatformSatRENRho vectors. */ 
The rate of change (in rad/sec) */ 
of the separation of LaserRENRho*/ 
PlatformSatRENRho vectors. */ 
The acceleration (in rad/secA2) */ 
of the separation of LaserRENRho*/ 

LaserRENRhoR 

LaserRENRhoE 

LaserRENRhoN 

LaserRENRhoRDot 

LaserRENRhoEDot 

Las erRENRhoNDo t 

LaserRENRhoRDotDot 

Las erRENRhoEDo tDo t 

Las erRENRhoNDo tDo t 

RangelnKilometers 

ErrorAnglelnRadians 
SeparationAngle 

SeparationAngleDot 

SeparationAngleDotDot 

ErrorList 
and PlatformSatRENRho vectors. 
The Errors which have occurred 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

173 



struct Satellite &Sat, 
double &ThetaGInRad, 
double JulianDate, 
double LaserAzimuthlnDegrees, 
double LaserAzimuthDot, 
double LaserAzimuthDotDot, 
double LaserElevationlnDegrees, 
double LaserElevationDot, 
double LaserElevationDotDot, 
double SatPositionErrorInMeters, 
double PlatformPositionErrorInMeters, 
double MissilePositionErrorlnMeters, 
double RangeToMissilelnKilometers, 
double OtherErrorAnglelnDeg, 
double &PlatformSatRENRhoR, 
double &PlatformSatRENRhoE, 
double &PlatformSatRENRhoN, 
double &PlatformSatRENRhoRDot, 
double &PlatformSatRENRhoEDot, 
double &PlatformSatRENRhoNDot, 
double &PlatformSatRENRhoRDotDot, 
double SPlatformSatRENRhoEDotDot, 
double &PlatformSatRENRhoNDotDot, 
double ScLaserRENRhoR, 
double &LaserRENRhoE, 
double &LaserRENRhoN, 
double &LaserRENRhoRDot, 
double &LaserRENRhoEDot, 
double &LaserRENRhoNDot, 
double &LaserRENRhoRDotDot, 
double ScLaserRENRhoEDotDot, 
double &LaserRENRhoNDotDot, 
double &RangeToSatInKilometers, 
double &ErrorAngleInRadians, 
double ScSeparationAngle, 
double ScSepAngleDot, 
double ScSepAngleDotDot, 
ErrorStructure  &ErrorList); 

/**************************************************************************•*/ 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

FUNCTION NAME: 
AUTHOR: 
DATE CREATED: 

PURPOSE: 

INPUTS: 

FindErrorAngle 
Captain David Vloedman 
January 3, 1999 

*/ 
*/ 
*/ 
*/ 

This function will take the range to satellite and the  */ 
satellite position error and fiond the appropriate error*/ 
error angle. */ 

*/ 
NAME: DEFINITION: */ 
Range Holds the range of the aircraft */ 

to the satellite in kilometers. */ 
SatPositionErrorInMeters Holds the radius of the error  */ 

spheroid that describes the */ 
area in which the satellite is */ 
known to exist (in meters). */ 
.Holds the radius of the error */ 
spheroid that describes the */ 
area in which the platform is */ 
known to exist (in meters). */ 
Holds the radius of the error */ 
spheroid that describes the */ 
area in which the missile is   */ 

PlatformPositionError. 

MissilePositionError. 
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/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

OUTPUTS: 

COMPILER: 

RangeToMissilelnKilo... 
OtherErrorAnglesInDeg 

NAME: 
ErrorAnglelnRadians 
ErrorList 

known to exist (in meters). */ 
The Range to the missile (km) */ 
Holds any other error angles */ 
(in degrees) that may be a */ 
significant source of error. */ 
This should usually be set to */ 
zero (0.0) float. */ 
DESCRIPTION: */ 
The total error angle in radians*/ 
The Errors which have occurred */ 

*/ 
*/ 
*/ 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

/* */ 
fie***************************************************************************/ 

void FindErrorAngle(double RangeToSatlnKilometers, 
double SatPositionErrorlnMeters, 
double PlatformPositionErrorlnMeters, 
double MissilePositionErrorlnMeters, 
double RangeToMissilelnKilometers, 
double OtherErrorAnglesInDeg, 
double &ErrorAngleInRadians, 
ErrorStructure  &ErrorList); 

Z****************************************************************************/ 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

FUNCTION NAME: 
AUTHOR: 
DATE CREATED: 

PURPOSE: 

INPUTS: 

FindSeparationAngle 
Captain David Vloedman 
January 3, 1999 

This routine finds the angle separating the satellite 
position vector and the laser turret unit direction 
vector in the REN coordinate frame, as well as the rate 
of change and the acceleration of that separation. 

NAME: 
LaserRENRhoR 

LaserRENRhoE 

LaserRENRhoN 

LaserRENRhoRDot 

LaserRENRhoEDot 

LaserRENRhoNDot 

LaserRENRhoRDotDot 

Las erRENRhoEDo tDo t 

LaserRENRhoNDotDot 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

*/ 
DEFINITION: */ 
The Radial unit direction of the*/ 
lazer beam trajectory in the REN*/ 
frame. */ 
The East unit direction of the */ 
lazer beam trajectory in the REN*/ 
frame. */ 
The North unit direction of the */ 
lazer beam trajectory in the REN*/ 
frame. */ 
The Radial unit velocity of the */ 
lazer beam trajectory in the REN*/ 
frame in unit dir*radians/sec */ 
The East unit velocity of the */ 
lazer beam trajectory in the REN*/ 
frame in unit dir*radians/sec */ 
The North unit velocity of the */ 
lazer beam trajectory in the REN*/ 
frame in unit dir*radians/sec */ 
The Radial unit accel. of the */ 
lazer beam trajectory in the REN*/ 
frame in unit dir*radians/sec"2 */ 
The East unit accel. of the */ 
lazer beam trajectory in the REN*/ 
frame in unit dir*radians/secA2 */ 
The North unit accel. of the   */ 
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/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/** 

OUTPUTS: 

SatRENRhoR 

SatRENRhoE 

SatRENRhoN 

SatRENRhoRDot 

SatRENRhoEDot 

SatRENRhoNDot 

SatRENRhoRDo tDo t 

SatRENRhoEDotDot 

SatRENRhoNDotDot 

NAME: 
SeparationAngle 

SeparationAngleDot 

SeparationAngleDotDot 

ErrorList 

lazer beam trajectory in the REN*/ 
frame in unit dir*radians/secA2 */ 
The Radial Component of the */ 
position vector of the satellite*/ 
wrt the platform in the REN */ 
coordinate frame. */ 
The East Component of the */ 
position vector of the satellite*/ 
wrt the platform in the REN */ 
coordinate frame. */ 
The North Component of the */ 
position vector of the satellite*/ 
wrt the platform in the REN */ 
coordinate frame. */ 
The Radial Component of the */ 
velocity vector of the satellite*/ 
wrt the platform in the REN */ 
coordinate frame. */ 
The East Component of the */ 
velocity vector of the satellite*/ 
wrt the platform in the REN */ 
coordinate frame. */ 
The North Component of the */ 
velocity vector of the satellite*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

wrt the platform in the REN 
coordinate frame. 
The Radial Component of the 
accel vector of the satellite 
wrt the platform in the REN 
coordinate frame. 
The East Component of the 
accel vector of the satellite 
wrt the platform in the REN 
coordinate frame. 
The North Component of the 
accel vector of the satellite 
wrt the platform in the REN 
coordinate frame. 

of 
DESCRIPTION: 
The separation (in radians) 
the LaserRENRho and 
PlatformSatRENRho vectors. 
The rate of change (in rad/sec) 
of the separation of LaserRENRho*/ 
PlatformSatRENRho vectors.      */ 
The acceleration (in rad/secA2) */ 
of the separation of LaserRENRho*/ 
and PlatformSatRENRho vectors. 
The Errors which have occurred 

COMPILER: 

****** ******** 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

t*************************************************************/ 

void FindSeparationAngle(double LaserRENRhoR, 
double LaserRENRhoE, 
double LaserRENRhoN, 
double LaserRENRhoRDot, 
double LaserRENRhoEDot, 
double LaserRENRhoNDot, 
double LaserRENRhoRDotDot, 
double LaserRENRhoEDotDot, 
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double LaserRENRhoNDotDot, 
double SatRENRhoR, 
double SatRENRhoE, 
double SatRENRhoN, 
double SatRENRhoRDot, 
double SatRENRhoEDot, 
double SatRENRhoNDot, 
double SatRENRhoRDotDot, 
double SatRENRhoEDotDot, 
double SatRENRhoNDotDot, 
double &SeparationAngleInRadians, 
double &SepAngleDot, 
double &SepAngleDotDot, 
ErrorStructure  &ErrorList); 

#endif 
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C.6 The Process Satellite Library 

The Process Satellite Library holds the modules responsible for tying together all 

of the modules mentioned previously to successfully evaluate a single satellite. This 

library is composed of four modules, ProcessSatellite, InterpolateVertex, 

FindDisplacementAnglesAgain, and TargetPlatformAgain. ProcessSatellite is the master 

module that uses all of the other modules to complete the evaluation of a single satellite. 

Process Satellite can be run independently of the Main Processor by using a calling 

program such as the GUI used in this project, shown in Figure C.7. 
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Figure C.7. GUI Used to Run and Test ProcessSatellite Module 
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C.6.1 ProcessSatellite 

As mentioned previously, ProcessSatellite is one of the master modules of the 

Main Processor. It is responsible for tying together all of the modules discussed so far, to 

process and evaluate a single satellite.   It first calls FindDisplacementAngles to find a 

forecasted intercept time, and then, if the satellite is forecasted to intersect the laser, it 

calls Interpolate Vertex to more closely examine that intersection point. 

Inputs 

struct Satellite &Sat The structure holding all of the satellite 
ephemeris information. The Type "Satellite" is defined in Satellite.h. 

struct      Aircraft   &ABLPlatform ABLPlatform is a structure of type 
"Aircraft" that holds all of the information about the position of the aircraft at the 
time of execution of 
the Preprocessor. 

double JulianDate This is the modified Julian Date (The Julian Date - 
2440000) that needs to be propagated to. This is the actual time at which the user 
wishes to find the position of the satellite. 

double AzimuthlnDegrees The current azimuth of the laser turret in 
degrees. 

double ElevationlnDegrees The current elevation of the laser turret in 
degrees. 

double AzimuthDot The current rate of change of the azimuth of the laser 
turret in degrees per second. 

double ElevationDot The current rate of change of the elevation of the 
laser turret in degrees per second. 

double AzimuthDot Dot The current acceleration of the azimuth of the 
laser turret in degrees per second. 

double ElevationDot Dot The current acceleration of the elevation of the 
laser turret in degrees per second. 

double SatPositionErrorInMeters The radius of the "sphere" inside 
which the satellite is known to reside (in meters) throughout the forecast period 
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(around 10 to 30 seconds). For SGP4, this may be as high as around 10 km 
(10000 m). 

double PlatformPositionErrorInMeters The radius of the "sphere" 
inside which the platform is known to reside (in meters) throughout the forecast 
period (around 10 to 30 seconds). For a 747 on autopilot with GPS tracking, a 
rough estimate might be 50 meters. 

double MissilePositionErrorlnMeters The radius of the "sphere" 
inside which the missile is known to reside (in meters) throughout the forecast 
period (around 10 to 30 seconds). This may just be an educated guess. It is 
difficult to now the behavior of the missile based on initial conditions, and this 
parameter will have to be given some thought. 

double RangeToMissilelnKilometers The range from the platform to 
the missile. 

double OtherErrorAnglelnDeg This is a "catch-all" parameter, to be 
used if, in the future, there are other error angles that crop up that have not already 
been accounted for. 

int Ref erenceHour Reference hour Refers to the Reference angle of 0g 

(The angle between the Greenwich meridian and the Vernal Equinox). This 
angles is given in hours, minutes and seconds as opposed to degrees or radians. 
This parameter holds the hours portion of 0g. 

int    Ref erenceMinute The minutes portion of 6g. 

double    ReferenceSecond The seconds portion of 8g. 

double RefModJulianDate This parameter holds the Modified Julian 
Date at which the reference angle, 0g, was taken. This allows 0g to be propagated 
forward to the present moment. 

double SecondsFromVertex This input parameter describes the number 
of seconds before the forecast intercept time the the user desires to analyze via 
interpolation. For a better explanation on interpolation, see Chapter in. The 
author recommends this time interval be around 2.0 seconds. 

double Interpolationlncrement The amount of time that transpires 
between samplings when interpolating the vertex. For a better extplanation on 
interpolation, see Chapter III. The author recommends this time interval be 
around 0.1 seconds. 

180 



double LazeDurat ion The expected amount of time that the lazer will be 
"on", or illuminating its target. It is estimated that this value should never 
operationally exceed thirty seconds. 

Outputs 

double ThetaGInRad This is the angle at which the Earth's Greenwich 
Meridian is currently at with respect to the ECI frame, where the referent angle is 
the Vernal Equinox. This angle should be in radians. 

double &RangeInKilometers Range to the satellite from the platform 
in kilometers. 

double &ErrorAngleInRadians The final error angle (in radians) 
resulting from the position errors given previously. 

double &SeparationAngle The separation angle between the laser turret 
unit position vector and the satellite position vector in the REN frame. 

double &SepAngleDot The rate of change of the separation angle in radians 
per second. 

double &SepAngleDotDot The acceleration of the separation angle in 
radians per second squared. 

int &Intersection     This is a boolean value that informs the user as 
to whether an intersection has been determined to occur or not. 

0 = No intersection determined 
1 = Intersection determined 

int &lnterpolation     This is a boolean parameter that tells the user 
whether or not the satellite was forecast to come close enough to the laser vector 
to warrant an interpolation. 

0 = Satellite not close enough to warrant interpolation. 
1 = Satellite approached close enough, interpolation performed. 

double &TimeToIntersect If an intersection is determined to occur, this 
parameter will tell how many seconds into the future this intersection will occur. 
If an intersection does not occur, this parameter will be set to 0.0. 

double &ClosestApproachInDegrees The closest that this satellite 
ever comes to the laser position vector. 

ErrorStructure fcErrorList      This is the error-handling structure 
that is used as both an input (to see if errors have occurred) and an output (to list 
any errors occurring in this module). 
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C.6.2 Interpolate Vertex 

InterpolateVertex is responsible for propagation of the actual positions of the 

different players of the satellite analysis in time. This actual propagation is used to find 

the "real" separation angle between the satellite position vector and the laser position 

vector at different points in time. Although this procedure yields a fairly exact forecast 

for the separation angle, it is not used for every satellite, because it is calculation 

intensive. Rather ProcessSatellite uses a rough forecast based upon the initial saparation 

angle, the rate of change, and the acceleration of the angle. If this initial forecast 

indicates a close-approach (an intersection, according to the forecast) of the satellite, then 

and only then is InterpolateVertex called to fully evaluate that close approach. Because 

many of the calculations needed to propagate positions in time have already been done, 

InterpolateVertex does not call FindDisplacementAngles or TargetPlatform, as might 

normally be expected when trying to find the new position of the platform and the 

separation angle. Rather, a shortened version of these two modules, 

FindDisplacementAnglesAgain, and TargetPlatformAgain, were created to lighten the 

processing load. Further examination of these modules will reveal that even more can be 

stripped from these modules to further condense the amount of processing needed. 

Unfortunately, there was not enough time to "optimize" these two modules and perform 

the necessary testing again, as of the writing of this final draft. However, it should not be 

that difficult to identify the portions of these shortened modules that are not needed to 

find only the separation angle. As the software stands, however, it is still running within 

an acceptable time margin. InterpolateVertex is the only module to call 

FindDisplacementAnglesAgain and TargetPlatformAgain. 
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Inputs 

v 

struct Satellite &Sat The structure holding all of the satellite 
ephemeris information. The Type "Satellite" is defined in Satellite.h. 

struct     Aircraft   &ABLPlatform ABLPlatform is a structure of type 
"Aircraft" that holds all of the information about the position of the aircraft at the 
time of execution of 
the Preprocessor. 

int Ref erenceHour Reference hour Refers to the Reference angle of 0g 

(The angle between the Greenwich meridian and the Vernal Equinox). This 
angles is given in hours, minutes and seconds as opposed to degrees or radians. 
This parameter holds the hours portion of 0g. 

int    Ref erenceMinute The minutes portion of 6g. 

double    Ref erenceSecond The seconds portion of 0g. 

double      RefModJulianDate This parameter holds the Modified Julian 
Date at which the reference angle, 9g, was taken. This allows 9g to be propagated 
forward to the present moment. 

double LazeDuration The expected amount of time that the lazer will be 
"on", or illuminating its target. It is estimated that this value should never 
operationally exceed thirty seconds. 

double JulianDate This is the modified Julian Date (The Julian Date - 
2440000) that needs to be propagated to. This is the actual time at which the user 
wishes to find the position of the satellite. 

double AzimuthlnDegrees The current azimuth of the laser turret in 
degrees. 

double ElevationlnDegrees The current elevation of the laser turret in 
degrees. 

double AzimuthDot The current rate of change of the azimuth of the laser 
turret in degrees per second. 

double ElevationDot The current rate of change of the elevation of the 
laser turret in degrees per second. 

double AzimuthDot Dot The current acceleration of the azimuth of the 
laser turret in degrees per second. 
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double ElevationDotDot The current acceleration of the elevation of the 
laser turret in degrees per second. 

double ErrorAnglelnRadians The final error angle (in radians) 
resulting from the position errors given previously. 

double SecondsFromVertex This input parameter describes the number 
of seconds before the forecast intercept time the the user desires to analyze via 
interpolation. For a better explanation on interpolation, see Chapter HI. The 
author recommends this time interval be around 2.0 seconds. 

double Interpolationlncrement The amount of time that transpires 
between samplings when interpolating the vertex. For a better extplanation on 
interpolation, see Chapter III. The author recommends this time interval be 
around 0.1 seconds. 

Outputs 

double &TimeToIntersect If an intersection is determined to occur, this 
parameter will tell how many seconds into the future this intersection will occur. 
If an intersection does not occur, this parameter will be set to 0.0. 

double &ClosestApproachInDegrees The closest that this satellite 
ever comes to the laser position vector. 

ErrorStructure &ErrorList      This is the error-handling structure 
that is used as both an input (to see if errors have occurred) and an output (to list 
any errors occurring in this module). 

C.6.3 FindDisplacementAnglesAgain 

FindDisplacementAnglesAgain is a module that is a shortened version of the 

original FindDisplacementAngles module that found the sepearation angle, as well as the 

rate of change and acceleration of that angle. To prevent azimuth and elevation 

reconversion to ECI coordinates, three new parameters were added to simply propagate 

the platforms motion in the ECEF frame. Admittedly, this module could have been done 

more thoughtfully.    Time was running out, and a quick fix was needed to make 
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Interpolate Vertex run.   Further optimization efforts should start here, with these two 

modules. 

Inputs 

struct Satellite &Sat The structure holding all of the satellite 
ephemeris information. The Type "Satellite" is defined in Satellite.h. 

struct     Aircraft   &ABLPlatform ABLPlatform is a structure of type 
"Aircraft" that holds all of the information about the position of the aircraft at the 
time of execution of 
the Preprocessor. 

double ThetaGInRad This is the angle at which the Earth's Greenwich 
Meridian is currently at with respect to the ECI frame, where the referent angle is 
the Vernal Equinox. This angle should be in radians. 

double JulianDate This is the modified Julian Date (The Julian Date - 
2440000) that needs to be propagated to. This is the actual time at which the user 
wishes to find the position of the satellite. 

double ChangelnX This is the ECEF X propagation distance used to 
propagate the platform position forward in time. 

double ChangelnY This is the ECEF Y propagation distance used to 
propagate the platform position forward in time. 

double ChangelnZ This is the ECEF Z propagation distance used to 
propagate the platform position forward in time. 

double AzimuthlnDegrees The current azimuth of the laser turret in 
degrees. 

double ElevationlnOegrees The current elevation of the laser turret in 
degrees. 

double AzimuthDot The current rate of change of the azimuth of the laser 
turret in degrees per second. 

double ElevationOot The current rate of change of the elevation of the 
laser turret in degrees per second. 

double AzimuthDot Dot The current acceleration of the azimuth of the 
laser turret in degrees per second. 
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double ElevationDotDot The current acceleration of the elevation of the 
laser turret in degrees per second. 

double ErrorAnglelnRadians The final error angle (in radians) 
resulting from the position errors given previously. In the Original 
FindDisplacementAngles, this was an output parameter, but since it has already 
been found, it need not be recalculated for the brief forecast time. 

Outputs 

double &LaserRENRhoR The current REN R (Radial) unit position vector 
of the position of the laser with respect to the platform, as derived from the 
azimuth and elevation. 

double &LaserRENRhoE The current REN E (East) unit position vector of 
the position of the laser with respect to the platform, as derived from the azimuth 
and elevation. 

double &LaserRENRhoN The current REN N (North) unit position vector 
of the position of the laser with respect to the platform, as derived from the 
azimuth and elevation 

double &LaserRENRhoRDot The current REN R (Radial) velocity vector 
of the velocity of the laser with respect to the platform, as derived from the 
azimuth, elevation and the rate of change of the azimuth and elevation. 

double &LaserRENRhoEDot The current REN E (East) velocity vector of 
the velocity of the laser with respect to the platform, as derived from the azimuth, 
elevation and the rate of change of the azimuth and elevation. 

double &LaserRENRhoNDot The current REN N (North) velocity vector 
of the velocity of the laser with respect to the platform, as derived from the 
azimuth, elevation and the rate of change of the azimuth and elevation. 

double     &LaserRENRhoRDotDot The   current   REN   R   (Radial) 
acceleration vector of the acceleration of the laser with respect to the platform, as 
derived from the azimuth, elevation, the rate of change of the azimuth and 
elevation, and the acceleration of the azimuth and elevation. 

double &LaserRENRhoEDotDot The current REN E (East) acceleration 
vector of the acceleration of the laser with respect to the platform, as derived from 
the azimuth, elevation, the rate of change of the azimuth and elevation, and the 
acceleration of the azimuth and elevation. 

double &LaserRENRhoNDotDot The current REN N (North) acceleration 
vector of the acceleration of the laser with respect to the platform, as derived from 
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the azimuth, elevation, the rate of change of the azimuth and elevation, and the 
acceleration of the azimuth and elevation. 

double   &RangeToSatInKilometers      Range to the satellite from the 
platform in kilometers. 

double  &SeparationAngle  The separation angle between the laser turret 
unit position vector and the satellite position vector in the REN frame. 

double &SepAngleDot The rate of change of the separation angle in radians 
per second. 

double   &SepAngleDotDot   The acceleration of the separation angle in 
radians per second squared. 

Error Structure &ErrorList      This is the error-handling structure 
that is used as both an input (to see if errors have occurred) and an output (to list 
any errors occurring in this module). 

C.6.4 TargetPlatformAgain 

TargetPlatformAgain is a shortened version of TargetPlatform that uses a set of 

platform position propagation parameters, ChangelnX, ChangelnY, and ChangelnZ to 

propagate the platform position forward in time, rather than recomputing position from 

latitude and longitude. 

Inputs 

struct     Aircraft   &ABLPlatform ABLPlatform is a structure of type 
"Aircraft" that holds all of the information about the position of the aircraft at the 
time of execution of 
the Preprocessor. 

double ThetaGInRad This is the angle at which the Earth's Greenwich 
Meridian is currently at with respect to the ECI frame, where the referent angle is 
the Vernal Equinox. This angle should be in radians. 

double JulianDate This is the modified Julian Date (The Julian Date - 
2440000) that needs to be propagated to. This is the actual time at which the user 
wishes to find the position of the satellite. 
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double   ChangeInX      This is the ECEF X propagation distance used to 
propagate the platform position forward in time. 

double   ChangeInY   This is the ECEF Y propagation distance used to 
propagate the platform position forward in time. 

double   ChangelnZ   This is the ECEF Z propagation distance used to 
propagate the platform position forward in time. 

Outputs 

double &PlatformECIRhoX The current ECI X position vector of the 
position of the platform with respect to the center of the Earth, as derived from the 
latitude and longitude given in the Aircraft structure input. 

double &PlatformECIRhoY The current ECI Y position vector of the 
position of the platform with respect to the center of the Earth, as derived from the 
latitude and longitude given in the Aircraft structure input. 

double &PlatformECIRhoZ The current ECI Z position vector of the 
position of the platform with respect to the center of the Earth, as derived from the 
latitude and longitude given in the Aircraft structure input. 

double &PlatformECIRhoXDot The current ECI X velocity vector of 
the velocity of the platform with respect to the center of the Earth, as derived from 
the ECEF velocities given in the Aircraft structure input. 

double &Plat£ormECIRhoYDot The current ECI Y velocity vector of 
the velocity of the platform with respect to the center of the Earth, as derived from 
the ECEF velocities given in the Aircraft structure input. 

double &Platf ormECIRhoZDot The current ECI Z velocity vector of the 
velocity of the platform with respect to the center of the Earth, as derived from the 
ECEF velocities given in the Aircraft structure input. 

double &PlatformECIRhoXDotDot The current ECI X acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations only. It is assumed that the 
aircraft itself is maintaining straight and level flight at constant velocity. 

double &PlatformECIRhoYDotDot The current ECI Y acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations only. It is assumed that the 
aircraft itself is maintaining straight and level flight at constant velocity. 
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double &PlatformECIRhoZDotDot The current ECI Z acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations only. It is assumed that the 
aircraft itself is maintaining straight and level flight at constant velocity. 

double &Platf ormRENRhoR The current REN R (Radial) position vector 
of the position of the platform with respect to the center of the Earth, as derived 
from the ECI position vector, rotated into the REN frame. 

double &PlatformRENRhoE The current REN E (East) position vector of 
the position of the platform with respect to the center of the Earth, as derived from 
the ECI position vector, rotated into the REN frame. 

double &PlatformRENRhoN The current REN N (North) position vector 
of the position of the platform with respect to the center of the Earth, as derived 
from the ECI position vector, rotated into the REN frame. 

double &Platf ormRENRhoRDot The current REN R (Radial) velocity 
vector of the velocity of the platform with respect to the center of the Earth, as 
derived from the ECI velocity vector, rotated into the REN frame. 

double &PlatformRENRhoEDot The current REN E (East) velocity 
vector of the velocity of the platform with respect to the center of the Earth, as 
derived from the ECI velocity vector, rotated into the REN frame. 

double &PlatformRENRhoNDot The current REN N (North) velocity 
vector of the velocity of the platform with respect to the center of the Earth, as 
derived from the ECI velocity vector, rotated into the REN frame. 

double fcPlatf ormRENRhoRDot Dot The current REN R acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations derived in the ECI frame 
and rotated into the REN frame. It is assumed that the aircraft itself is 
maintaining straight and level flight at constant velocity. 

double &Platf ormRENRhoEDotDot The current REN E acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations derived in the ECI frame 
and rotated into the REN frame. It is assumed that the aircraft itself is 
maintaining straight and level flight at constant velocity. 

double &Plat£ormRENRhoNDotDot The current REN N acceleration 
vector of the acceleration of the platform with respect to the center of the Earth, as 
derived from the centripetal and Coriolis accelerations derived in the ECI frame 
and rotated into the REN frame. It is assumed that the aircraft itself is 
maintaining straight and level flight at constant velocity. 

189 



double fcECItoRENMatrixll This an element (row 1, column 1) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrixl2 This an element (row 1, column 2) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrixl3 This an element (row 1, column 3) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrix21 This an element (row 2, column 1) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrix22 This an element (row 2, column 2) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrlx23 This an element (row 2, column 3) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrix31 This an element (row 3, column 1) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrix32 This an element (row 3, column 2) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

double &ECItoRENMatrlx33 This an element (row 3, column 3) of the 
matrix used to transform a vector from the ECI coordinate frame to the REN 
coordinate frame. 

ErrorStructure &ErrorList      This is the error-handling structure 
that is used as both an input (to see if errors have occurred) and an output (to list 
any errors occurring in this module). 
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C.6.5 The TargetSatellitch Header File 

#ifndef ProcessSatelliteH 
#define ProcessSatelliteH 
/***************************************************************•************/ 

/* MODULE NAME:    ProcessSatellite.h                                    */ 
/* AUTHOR:        Captain David Vloedman                                */ 
/* DATE CREATED:   14 January, 1999                                         */ 
/* */ 
/* PURPOSE:       This module supports the meat of the Main Processor and */ 
/* is used to evaluate the error angle and the displacement*/ 
/* angle between the laser position vector in the REN frame*/ 
/* and the satellite position vector in the same frame.  It*/ 
/* uses this angle and its rate of change to determine when*/ 
/* and if the satellite will intersect the path of the    */ 
/* laser.                                             */ 
/* */ 
/* COMPILER:      Borland C++ Builder3 Standard version                 */ 
/* This compiler should be used to compile and link.      */ 
/* */ 
/****************************************************************************/ 
/a********************************/ 

/* C++BUILDER-SPECIFIC LIBRARIES */ 
/•A*******************************/ 

#include <vcl.h> 
#pragma hdrstop 
♦pragma package(smart_init) 
/*********************************/ 

/* USER-BUILT LIBRARIES */ 
/*********************************/ 

#include "TimeModules.h" 
♦include "TLEInput.h" 
♦include "LaserConstants.h" 
♦include "Satellite.h" 
♦include "Aircraft.h" 
♦include "ErrorStructure.h" 
♦include "EvaluateEphemerisModules.h" 
♦include "SGP4SupportModules.h" 
♦include "FindDisplacementAngleModules.h" 
♦include "TargetSatellite.h" 
♦include "TargetPlatform.h" 
♦include "TargetLaser.h" 

/* C STANDARD LIBRARIES */ 
/*********************************/ 

♦include <stdio.h> 
♦include <stdlib.h> 
♦include <string.h> 
♦include <iostream.h> 
♦include <conio.h> 
♦include <math.h> 

/**********************************************•*****************************/ 

/*********************** FUCTIONS        *****************************/ 

/A***************************************************************************/ 

/*  FUNCTION NAME:  ProcessSatellite */ 
/* AUTHOR:        Captain David Vloedman */ 
/*  DATE CREATED:   January 13,1999 */ 
/* */ 
/*  PURPOSE:        This module supports the meat of theMain Processor and  */ 
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/* is used to evaluate the error angle and the displacement*/ 
/* angle between the laser position vector in the REN frame*/ 
/* and the satellite position vector in the same frame.  It*/ 
/* uses this angle and its rate of change to determine when*/ 
/* and if the satellite will intersect the path of the    */ 
/* laser.                                           */ 
/* */ 
/* */ 
/*  COMPILER: Borland C++ Builder3 Standard version                  */ 
/* This compiler should be used to compile and link.      */ 
/* */ 
/***************************************************************************•/ 

void ProcessSatellite(struct Aircraft &Platform, 
struct Satellite &Sat, 
int   ReferenceHour, 
int   ReferenceMinute, 
double ReferenceSecond, 
double RefModJulianDate, 
double SecondsFromVertex, 
double Interpolationlncrement, 
double &ThetaGInRad, 
double JulianDate, 
double LazeDuration, 
double LaserAzimuthlnDegrees, 
double LaserAzimuthDot, 
double LaserAzimuthDotDot, 
double LaserElevationlnDegrees, 
double LaserElevationDot, 
double LaserElevationDotDot, 
double SatPositionErrorlnMeters, 
double PlatformPositionErrorlnMeters, 
double MissilePositionErrorlnMeters, 
double RangeToMissilelnKilometers, 
double OtherErrorAnglelnDeg, 
double &RangeInKilometers, 
double &ErrorAngleInRadians, 
double ScSeparationAngle, 
double &SepAngleDot, 
double ScSepAngleDotDot, 
int   ^Intersection, 
int   &Interpolation, 
double ScTimeToIntersect, 
double ScClosestApproachlnDegrees, 
ErrorStructure   &ErrorList); 

/A***************************************************************************/ 

/* FUNCTION NAME:  InterpolateVertex                                     */ 
/* AUTHOR:        Captain David Vloedman                              */ 
/* DATE CREATED:   January 13,1999                                         */ 
/* */ 
/* PURPOSE:       This module supports the meat of the Main Processor and */ 
/* is used to evaluate the error angle and the displacement*/ 
/* angle between the laser position vector in the REN frame*/ 
/* and the satellite position vector in the same frame    */ 
/* during the relatively short time of estimated closest  */ 
/* approach of the two vectors.  The smaller the inter-    */ 
/* polation increment, the more accurate the estimate, and */ 
/* the longer the processing time.                        */ 
/* */ 
/* COMPILER:      Borland C++ Builder3 Standard version                 */ 
/* This compiler should be used to compile and link.      */ 
/* */ 
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void InterpolateVertex(struct Aircraft &Platform, 
struct Satellite &Sat, 
int   ReferenceHour, 
int   ReferenceMinute, 
double ReferenceSecond, 
double RefModJulianDate, 
double JulianDate, 
double LazeDuration, 
double LaserAzimuthlnDegrees, 
double LaserAzimuthDot, 
double LaserAzimuthDotDot, 
double LaserElevationlnDegrees, 
double LaserElevationDot, 
double LaserElevationDotDot, 
double ErrorAnglelnRadians, 
double SecondsFromVertex, 
double Interpolationlncrement, 
double ScTimeToIntersect, 
double &ClosestApproachInDegrees, 
ErrorStructure  &ErrorList); 

/A***************************************************************************/ 

TargetPlatformAgain */ 
Captain David Vloedman */ 
January 24, 1998 */ 

*/ 
This function will take the position of the aircraft and*/ 
position,velocity and acceleration in the REN frame of */ 
the Airborn lager platform. This is very similar to */ 
"TargetPlatform", but uses slightly different input */ 
parameters. */ 

*/ 
Borland C++ Builder3 Standard version */ 
This compiler should be used to compile and link.      */ 

/* */ 
/it***************************************************************************/ 

void TargetPlatformAgain(struct Aircraft fcPlatform, 
double &ThetaGInRad, 
double JulianDate, 
double ChangelnX, 
double ChangelnY, 
double ChangelnZ, 
double &PlatformECIRhoX, 
double ScPlatformECIRhoY, 
double &PlatformECIRhoZ, 
double &PlatformECIRhoXDot, 
double &PlatformECIRhoYDot, 
double &PlatformECIRhoZDot, 
double ScPlatformECIRhoXDotDot, 
double &PlatformECIRhoYDotDot, 
double ScPlatformECIRhoZDotDot, 
double ScPlatformRENRhoR, 
double &PlatformRENRhoE, 
double ScPlatformRENRhoN, 
double ScPlatformRENRhoRDot, 
double &PlatformRENRhoEDot, 
double ScPlatformRENRhoNDot, 
double ScPlatformRENRhoRDotDot, 
double &PlatformRENRhoEDotDot, 
double &PlatformRENRhoNDotDot, 
double &ECItoRENMatrixll, 

/* FUNCTION NAME 
/* AUTHOR: 
/* DATE CREATED: 
/* 
/* PURPOSE: 
/* 
/* 
/* 
/* 
/* 
/* COMPILER: 
/* 
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double &ECItoRENMatrixl2, 
double &ECItoRENMatrixl3, 
double &ECItoRENMatrix21, 
double &ECItoRENMatrix22, 
double &ECItoRENMatrix23, 
double &ECItoRENMatrix31, 
double &ECItoRENMatrix32, 
double &ECItoRENMatrix33, 
ErrorStructure  &ErrorList) 

I****************************************************************************/ 

/* FUNCTION NAME:  FindDisplacementAnglesAgain                          */ 
/* AUTHOR:        Captain David Vloedman                              */ 
/* DATE CREATED:   January 23,1999                                      */ 
/* */ 
/* PURPOSE:       This function will take satellite and platform data and */ 
/* willuse it to find the error angle and the displacement */ 
/* angle between the laser position vector in the REN frame*/ 
/* and the satellite position vector in the same frame.    */ 
/* NOTICE THAT THIS IS NOT "FindDisplacementAngles", BUT   */ 
/* "FindDisplacementAnglesAgain".  IT IS ONLY SLIGHTLY    */ 
/* DIFFERENT THAN THE OTHER, INCORPORATING THE THREE INPUT */ 
/* PARAMETERS ChangelnX, ChangelnY AND ChangelnZ WHICH    */ 
/* DESCRIBES A SLIGHT POSITION CHANGE IN THE ECEF FRAME.   */ 
/* */ 
/* COMPILER:      Borland C++ Builder3 Standard version                 */ 
/* This compiler should be used to compile and link.       */ 
/* '   ■                                              */ 

void FindDisplacementAnglesAgain(struct Aircraft &Platform, 
struct Satellite &Sat, 
double &ThetaGlnRad, 
double JulianDate, 
double ChangelnX, 
double ChangelnY, 
double ChangelnZ, 
double LaserAzimuthlnDegrees, 
double LaserAzimuthDot, 
double LaserAzimuthDotDot, 
double LaserElevationlnDegrees, 
double LaserElevationDot, 
double LaserElevationDotDot, 
double &PlatformSatRENRhoR, 
double &PlatformSatRENRhoE, 
double fcPlatformSatRENRhoN, 
double &PlatformSatRENRhoRDot, 
double &PlatformSatRENRhoEDot, 
double &PlatformSatRENRhoNDot, 
double ScPlatformSatRENRhoRDotDot, 
double ScPlatformSatRENRhoEDotDot, 
double &PlatformSatRENRhoNDotDot, 
double ScLaserRENRhoR, 
double ScLaserRENRhoE, 
double &LaserRENRhoN, 
double ScLaserRENRhoRDot, 
double ScLaserRENRhoEDot, 
double ScLaserRENRhoNDot, 
double &LaserRENRhoRDotDot, 
double &LaserRENRhoEDotDot, 
double &LaserRENRhoNDotDot, 
double &RangeToSatInKilometers, 
double &ErrorAngleInRadians, 
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double &SeparationAngle, 
double &SepAngleDot, 
double &SepAngleDotDot, 
Errorstrueture  &ErrorList) 

#endif 
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C.7 The ABLPA Main Processor 

The Main Processor is the final culmination of all of the software discussed previously. 

The task of the Main Processor is to take the output file containing all active satellites in 

view of the platform, and create two output files. The first output file will contain all of 

the satellites that are forecast to be intersected by the laser during the laze duration. The 

Processor also creates an output file containing the satellites that pass closely enough to 

the laser path to be "interpolated", or analyzed, but may or may not actually intersect the 

laser. This second "close-approach" file is used more for testing and verification than 

operational use. Statistically, more often than not the Intersection File will be empty after 
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F/gure C.0. The Graphical Interface Developed to Run the Main 
Processor 
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a full Main Processor run-through, because the chances of "hitting" a satellite (even with 

a theoretical error-angle) is slim. This close approach file can be used to verify the 

successful run and processing of the Main Processor. Both output files have exactly the 

same format as the main TLE file, except they have fewer (or no) satellites within them. 

This processor can be run independently, by a calling module made by the user, or by 

using the GUI developed to run and test the processor during project development. This 

graphical interface is illustrated in Figure C.8. 

C.7.1 PAMainProcessor 

The Main Processor calls the ReadTLEFile module to accomplish loading of all 

of the satellites in the input file, and then makes repeated calls to ProcessSatellite to 

analyze each satellite in turn. It can be seen that the format of the Main Processor is very 

similar to the Preprocessor, using input and output TLE files to accomplish most of the 

satellite information transfer. 

C.7.2 Inputs 

charlnFileName [MAXNAMELENGTH] This parameter holds the name of 
the Two Line Element Set that holds the satellites to be evaluated. 

char OutFileName [MAXNAMELENGTH] Holds the name of the file to 
which the intersected satellites' Two-Line Element set information is routed to. 
This file holds all of the satellites that have been judged by the Processor to be 
intersected by the laser during the laser firing time. 

char ClosestApproachFileName[MAXNAMELENGTH] Holds the name 
of the file to which the close-approach satellites' Two-Line Element set 
information is routed to. This file holds all of the satellites that have been judged 
by the Processor to be close enough to the laser beam that interpolation is 
required. 
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struct Aircraft &ABLPlatform ABLPlatform is a structure of type 
"Aircraft" that holds all of the information about the position of the aircraft at the 
time of execution of the Processor. 

int Ref erenceHour Reference hour Refers to the Reference angle of 6g 

(The angle between the Greenwich meridian and the Vernal Equinox). This 
angles is given in hours, minutes and seconds as opposed to degrees or radians. 
This parameter holds the hours portion of 6g. 

int    Ref erenceMinute The minutes portion of 0g. 

double    Ref erenceSecond The seconds portion of 0g. 

double RefModJulianDate This parameter holds the Modified Julian 
Date at which the reference angle, 0g, was taken. This allows 6g to be propagated 
forward to the present moment. 

int CalcYear   The current year. 

int CalcMonth The current month (1-12). 

int CalcDay The current day (1-31). 

int CalcHour The current hour (1-24). 

int CalcMinute The current minute (1-60). 

double CalcSecond The current second. This is the only part of the 
current time that can be given as a non-integer. This field should be accurate to 
at least three decimal places. 

double LazeDuration The expected amount of time that the lazer will be 
"on", or illuminating its target. It is estimated that this value should never 
operationally exceed thirty seconds. 

double LaserAzimuthlnDegrees The current azimuth of the laser 
turret in degrees. 

double LaserAzimuthDot The current rate of change of the azimuth of the 
laser turret in degrees per second. 

double LaserAzimuthDotDot The current acceleration of the azimuth of 
the laser turret in degrees per second. 

double LaserElevationlnDegrees The current elevation of the laser 
turret in degrees. 
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double LaserElevationDot The current rate of change of the elevation 
of the laser turret in degrees per second. 

double LaserAzimuthDotDot The current acceleration of the azimuth of 
the laser turret in degrees per second. 

double LaserElevationDot Dot The current acceleration of the elevation 
of the laser turret in degrees per second. 

double SatPosltionErrorlnMeters The radius of the "sphere" inside 
which the satellite is known to reside (in meters) throughout the forecast period 
(around 10 to 30 seconds). For SGP4, this may be as high as around 10 km 
(10000 m). 

double PlatformPositionErrorInMeters The radius of the "sphere" 
inside which the platform is known to reside (in meters) throughout the forecast 
period (around 10 to 30 seconds). For a 747 on autopilot with GPS tracking, a 
rough estimate might be 50 meters. 

double MissilePositionErrorlnMeters The radius of the "sphere" 
inside which the missile is known to reside (in meters) throughout the forecast 
period (around 10 to 30 seconds). This may just be an educated guess. It is 
difficult to now the behavior of the missile based on initial conditions, and this 
parameter will have to be given some thought. 

double RangeToMissilelnKilometers The range from the platform to 
the missile. 

double OtherErrorAnglelnDeg This is a "catch-all" parameter, to be 
used if, in the future, there are other error angles that crop up that have not already 
been accounted for. 

double SecondsFromVertex This input parameter describes the number 
of seconds before the forecast intercept time the the user desires to analyze via 
interpolation. For a better explanation on interpolation, see Chapter III. The 
author recommends this time interval be around 2.0 seconds. 

double Interpolationlncrement The amount of time that transpires 
between samplings when interpolating the vertex. For a better explanation on 
interpolation, see Chapter III. The author recommends this time interval be 
around 0.1 seconds. 
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C.7.3 Outputs 

int &IxiFileLength     This parameter tells the user how many 
elements were read in from the file specified by the input parameter 
"InFileName[MAXNAMELENGTH]". This is the total number of satellites that 
will be evaluated during the run of the Processor. 

int &OutFileLength  This parameter tells the user how many 
elements were written to the file specified by the input parameter 
"OutFileName[MAXNAMELENGTH]". This is the total number of satellites 
that were judged to be "intersected" of the laser between the time of the start of 
lazing and the end of the laze. 

int &CloseApproachFileLength This parameter tells the user how 
many elements were written to the file specified by the input parameter 
"CloseApproachFileName[MAXNAMELENGTH]". This should always be 
bigger than or equal to OutFileLength. 

double &ThetaGInDegrees This is the instantaneous angle between the 
Greenwich meridian and the Vernal Eqinox at the moment of execution of the 
Processor. 

ErrorStructure fcErrorList  This parameter is both an input and 
output parameter. Each module uses it to assess whether a fatal error has 
occurred somewhere else in the program, and uses it to record errors which may 
be important to the user. 
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/* MODULE NAME: 
/* AUTHOR: 
/* DATE CREATED 
/* 
/* PURPOSE: 
/* 
/* 
/* 
/* 
/* COMPILER: 
/* 
/* 

C.7.4 The PAMainProcessor.h Header File 

#ifndef PAMainProcessorH 
♦define PAMainProcessorH 
/A***************************************************************************/ 

PAMainProcessor.h */ 
Captain David Vloedman */ 
January 10, 1998 */ 

*/ 
This module is the model of the Airborne Laser */ 
Predictive Avoidance Processor which may be used to */ 
determine whether or not a given Laser trajectory will */ 
intersect with any of a list of satellites fed to it.   */ 

*/ 
Borland C++ Builder3 Standard version */ 
This compiler should be used to compile and link.      */ 

*/ 
/*******************************************************+******************•*/ 

/* C++BUILDER-SPECIFIC LIBRARIES */ 
/••••a****************************/ 

♦include <vcl.h> 
♦pragma hdrstop 
♦pragma package(smart_init) 
/*********************************/ 

/* USER-BUILT LIBRARIES */ 
/a********************************/ 

♦include "TimeModules.h" 
♦include "TLEInput.h" 
♦include "LaserConstants.h" 
♦include "Satellite.h" 
♦include "Aircraft.h" 
♦include "Errorstrueture.h" 
♦include "EvaluateEphemerisModules.h" 
♦include "PAMainProcessor.h" 
♦include "SGP4SupportModules.h" 
♦include "FindDisplacementAngleModules.h" 
♦include "TargetSatellite.h" 
♦include "TargetPlatform.h" 
♦include "TargetLaser.h" 
♦include "ProcessSatellite.h" 
/A********************************/ 

/* C STANDARD LIBRARIES */ 
/•a*******************************/ 

♦include <stdio.h> 
♦include <stdlib.h> 
♦include <string.h> 
♦include <iostream.h> 
♦include <conio.h> 
♦include <math.h> 

/Tic***************************************************************************/ 

/********************* **       FUCTIONS *****************************/ 

/•A**************************************************************************/ 

/* FUNCTION NAME: PAMainProcessor */ 
/* AUTHOR: Captain David Vloedman */ 
/* DATE CREATED: January 15,1998 */ 
/* */ 
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/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
7* 
/* 
/* 

PURPOSE: 

INPUTS: 

This procedure will read in an input file of Two Line 
Element (TLE) sets and perform an analysis to determine 
whether or not satellites will be intercepted by the 
path of the airborne platform laser. 

NAME: 
InFileName 
OutFileName 

DEFINITION: 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

Holds name of the satellite file*/ 

ABLPlatform 

ReferenceHour 

ReferenceMinute 

ReferenceSecond 

Re fModJu1ianDa te 

CalcYear 
Calcmonth 
CalcDay 
CalcHour 
CalcMinute 
CalcSecond 
LazeDuration 

File that holds the sats that */ 
are forecasted by the software */ 
to be intercepted bt the laser. */ 

ClosestApproachFileName File that holds the sats that  */ 
are forecasted by the software */ 
to be close to the laser. These */ 
are not necessarily intersected.*/ 
Holds all information about ABL */ 
Platform position/disposition */ 
This holds the value of Theta G */ 
at RefModJulianDate. The angle */ 
of Theta G is given in hours, */ 
minutes, and seconds instead of */ 
degrees, where 24 hrs = 360 deg */ 
Holds the minutes of Theta G at */ 
RefModJulianDate. */ 
Holds the seconds of Theta G at */ 
RefModJulianDate. */ 
This is the reference date when */ 
an actual observation of the */ 
true value of theta G was made. */ 
Holds the current calender year */ 
Holds the Calender month(l - 12)*/ 
Holds calender day */ 
Holds the calender hour */ 
Holds the calender minute */ 
Holds the calender second */ 
The amount of time for which the*/ 
laser will be on. This is */ 
To determine how much time in */ 
seconds the forecast will last. */ 

LazerAzimuthlnDegrees  Lazer Azimuth at Laze Start time*/ 
in Degrees */ 
The rate of change of the Az */ 
in Degrees/Sec. */ 
The rate of change of the rate */ 
of change of the Azimuth (Accel)*/ 
in Degrees/Sec/S2 */ 

LazerElevationlnDegrees Lazer Elevation at Laze Start  */ 
in Degrees */ 
The rate of change of the El */ 
in Degrees/Sec. */ 
The rate of change of the rate */ 
of change of the Elevat. (Accel)*/ 
in Degrees/Sec"2 */ 

SatPositionErrorlnMeters Holds the radius of the error  */ 
spheroid that describes the */ 
area in which the satellite is */ 
known to exist (in meters). */ 
.Holds the radius of the error */ 
spheroid that describes the */ 
area in which the platform is */ 
known to exist (in meters). */ 
Holds the radius of the error */ 
spheroid that describes the */ 
area in which the missile is   */ 

LazerAzimuthDot 

LazerAzimuthDotDot 

LazerElevationDot 

LazerElevationDotDot 

PlatformPositionError. 

MissilePositionError. 
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/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

RangeToMissilelnKilo.. 
OtherErrorAnglesInDeg 

ThetaGInRadians 

known to exist (in meters). 
The Range to the missile (km) 
Holds any other error angles 
(in degrees) that may be a 
significant source of error. 
This should usually be set to 
zero (0.0) float. 
The angle between the Greenwich 
Meridian and the Vernal Equinox 
at JulianDate. 

OUTPUTS: NAME: DESCRIPTION: 
InFileLength The total number of satellites. 

that have been evaluated in the 
InFile 

OutFileLength The total number of satellites 
that are intersected by platform*/ 
and have been put in the outfile*/ 

ClosestApproachFileLength The total number of satellites*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

ErrorList 

that come close to the laser 
and have been put in the 
closest approach file. 
Errors that have occured 

COMPILER: 

THE FINAL OUTPUT IS THE ACTUAL OUTFILE ITSELF WHICH IS 
WRITTEN DIRECTLY TO DISK SO IT CAN BE ACCESSED BY 
OTHER SOFTWARE, IF NEEDED. 

Borland C++ Builder3 Standard version 
This compiler should be used to compile and link. 

/****************************************************************************/ 

PAMainProcessor(char 
char 
char 
int 
int 
int 
struct 
int 
int 
double 
double 
int 
int 
int 
int 
int 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 

InFileName[MAXNAMELENGTH], 
OutFileName[MAXNAMELENGTH] , 
ClosestApproachFileName[MAXNAMELENGTH], 
&InFileLength, 
ScOutFileLength, 
ScClosestApproachFileLength, 
Aircraft &ABLPlatform, 
ReferenceHour, 
ReferenceMinute, 
ReferenceSecond, 
Re fMo dJu1ianDate, 
CalcYear, 
CalcMonth, 
CalcDay, 
CalcHour, 
CalcMinute, 
CalcSecond, 
LazeDuration, 
LaserAzimuthlnDegrees, 
LaserAzimuthDot, 
LaserAzimuthDotDot, 
LaserElevationlnDegrees, 
LaserElevationDot, 
LaserElevationDotDot, 
SatPositionErrorInMeters, 
PlatformPositionErrorInMeters, 
MissilePositionErrorInMeters, 
RangeToMissilelnKilometers, 
OtherErrorAnglelnDeg, 
SecondsFromVertex, 
Interpolationlncrement, 
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double     &ThetaGInDegrees, 
ErrorStructure       ScErrorList) ; 

#endif 
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